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K FOREWORD

The Silver Anniversary of the Conferences of Army Mathematicians was
conducted on the dates 6-8 June 1979. The U. S. Army Ballistic Research
Laboratory and the Johns Hopkins University served as its hosts. It was
held on the Homewood Campus of the Johns Hopkins University in Baltimore,
Maryland. The first meetings In this series were entitled OConferences
ofArs al Mathematicians'. The initial one was conducted at Watertown
Arsenal on 29 October 1954. The host for the meeting this year served
in the same capacity for the second conference which was only a one-day
meeting with one invited speaker. The eighth meeting in the series was
the first one to come under the auspices of the Army Mathematics Steering
Committee (AMSC). This Committee requested that these conferences be
held on an Army-wide basis and suggested that their title be changed to
"Conferences of Army Mathematicianst.

*Continuum MechanicsF was the theme selected for the Silver Jubilee. To
celebrate this occasion the number of guest speakers were increased, and
those individuals who were invited to talk were selected because they are
effective researchers who are in the frontiers of their fields. Another
important reason for their appearance on the program is that they are
interested in current and envisioned U. S. Army materiel research and
development problems. As in previous conferences there were a large
number of papers contributed by Army scientists. These, on the whole,
addressed problems of immediate interest to scientists in the various
Army laboratories. _1

The keynote speaker was Professor R. S. Rivlin, Director of the Center for
the Application of Mathematics at Lehigh University. The title of his
address was "The Mechanics of Non-Newtonian Fluids". Professor Werner
Goldsmith, Department of Applied Mechanics, University of California-Berkeley,
gave a featured presentation on "Mathematical Modeling of Some Aspects of
the Penetration of Plates by Projectiles". On the morning of the second
day of the conference, Professor Daniel D. Joseph, Department of Aerospace
Engineering and Mechanics, University of Minnesota, spoke about "Motions
which Perturb States of Rest of Viscoelastic Solids". On the afternoon
of this same day, Professor S. Nemat-Nasser, Department of Civil Engineering,
Northwestern University, gave an address entitled "Finite Deformation
Plasticity and Plastic Instability".

Other invited speakers were Professor George Papanicolaou, Courant Institute
of Mathematical Sciences, New York University, Professor Harry F. Tiersten,
Department of Mechanical Engineering, Aeronautical Engineering and Mechanics,
Rensselaer Polytechnic Institute and Professor Morton Gurtin, Department of
Mathematics, Carnegie-Mellon University. These gentlemen addressed the
conference on the third and last morning of this meeting.
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Dr. Papanicolaou's topic was "Effective Parameters and Fluctuation
Phenomena in Continuum Mechanics". Dr. Tiersten reporte-s on the
"Theory of Interpenetrating Solid Continua and Some Applcations",
while Dr. Gurtin addressed the group on the topic "Recent Results in
Finite Elasticity".

Another outstanding feature of this Silver Anniversary conference was
the awarding of the Decoration 6o Ditinguished Civitian Sevuice to
Professor Benjamin Noble upon his retirement as Director, Mathematics
Research Center (MRC), University of Wisconsin-Madison. This presentation
was made at the banquet by Dr. Percy Pierre, Assistant Secretary of the
Army for Research and Development. Dr. Pierre pointed to the many
outstanding scientific contributions made by Professor Noble to the
field of mathematics, and he also stressed the fact that Noble had
striven with unprecedented vigor, enthusiasm and innovation to render
MRC more responsive to Army needs. [In the photograph on one of the following
pages, Professor Noble is shown receiving the award from Dr. Pierre. The
gentlemen on the right is Professor John A. Nohel, the incoming Director
of MRC.]

Members of the AMSC would like to thank the Ballistic Research Laboratory
(BRL) and Johns Hopkins University for serving as hosts of the Twenty-
Fifth Conference of Army Mathematicians. Dr. Stephen S. Wolff, Chairman
of Local Arrangements, did an outstanding job of arranging for all the
needs of the speakers, and for handling the many requests for help by
those in attendance. He was ably assisted with these tasks by various
staff members of BRL and also employees of Johns Hopkins University.
All those that spent time to prepare and present papers are also due
their thanks. Their scientific ideas and methods for treating difficult
problems were enlighting to members of the audience. The latter group
added to the value of this conference by raising interesting questions
and making valuable suggestions on possible ways to cope with troublesome
problems.
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THE MECHANICS OF NON-NEITFONIAN FLUIDS

Ronald S. Rielin
Center for the Application of Mathematics

Lehigh University
Bethlehem, Pennsylvania

ABSTIACT. The continuum-mechanical theory of non-Newtonian fluids pre-

dicts many interesting flow effects which are qualitatively different from those

which are observed in Newtonian fluids. A number of these effects are discussed.

1-or the most part, the Rivlin-Ericksen c'nstitutive equation is used as a basis

t7or this discussion.

1. INTRODUCTION. One of the most striking advances in continuum

mechanics in recent years has been the development of a rational theory for the

mechanics of non-Newtonian fluids. One might think that the predictions of such

a theory would consist of no more than minor modifications of those provided by

the classical mechanics of Newtonian fluids in which effects, which in Newtonian

fluids obey linear laws, for non-Newtonian fluids obey non-linear laws. That

this is not the case was made evident from the rod-climbing experiment of Garner

and Nissan [1] which showed that, at any rate in certain non-Newtonian fluids,

rotation of a cylindrical rod with constant angular velocity in a bath of non-

Newtonian fluid would result in a rise of the fluid up the stirrer, rather than a

depression of the fluid due to the centrifugal effect. It was quickly realized

that such effects may arise from the tensorial character of the non-linear rela-

tion between the stress and the kinematic variables describing the flow field.

Theories based on such considerations have undergone a considerable development

since that time and have lead to many unexpected flow phenomena, some of them of

a spectacular character. It is not possible in this paper to introduce the many

different formulations of the mechanics of non-Newtonian fluids which have been

published. We concentrate on one particular formulation, due to Rivlin and

Ericksen [2],and give some examples of the more interesting effects which it

predicts.

2. RECTILINEAR SHEAR FLOW. For an incompressible Newtonian fluid in a

state of rectilinear shearing flow with velocity gradient K, direction of shear

parallel to the x1 -axis of a rectangular cartesian coordinate system x, and

the x1x2-plane as the plane of shear, the stress a = II aj is given by

-1-
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012 021 11 ~ 22 033 -p, 21

where r) is the viscosity of the fluid, p is an arbitrary hydrostatic

pressure and the remaining components of 0y are zero. The expressions (2.1)

are valid whether or not K is time-dependent.

More generally, for an incompressible non-Newtonian fluid, we can argue

from simple symmetry considerations that, provided K is time-independent,

'12 (=or21 ) is an odd function Of K and, apart from an arbitrary hydrostatic

pressure, a 11, a22' 0 33 are even functions Of K. Again, the remaining com-

ponents of a are zero. Thus,

0 12 a021 = Kf(K 2) , (2.2)

f K2 2f11( ) - P 022 f 2 (K) - , 3 3

(The even function Of K in the expression for 0 33 has been absorbed into the
arbitrary hydrostatic pressure p.)

We note immediately one striking feature which distinguishes the mechanics
of a non-Newtonian fluid from that of a Newtonian fluid. While for rectilinear

shearing flow of a Newtonian fluid the three normal components of the stress are
equal, this is not in general true for a non-Newtonian fluid. Effects which
arise from this fact are called normal stress effects. We also note the non-
linear dependence of the shear components of the stress on K.

Provided that the functions f, fV f 2are sufficiently smooth, we may
express them as Taylor series and neglect terms of higher degree than the second

in K - We then have

11 2CF12 a21 -2_1' 'Y1 4a3 K - P (2.3)

022 =('x 2 + 4a 3 )K p 33 , -p

where the as's are constants. (The manner in which the constant coefficients
in (2.3) are written is chosen in order to conform with notation used later.)
If in (2.3) terms of higher degree than the first in K are neglected we arrive
at the expressions (2.1) for the stress in a Newtonian fluid. This can accor-

dingly be regarded as the first-order approximation to the stress associated with

slow time-independent rectilinear shearing flow in a non-Newtonian fluid.

Equations (2.3) can be regarded as the second-order approximation. Third and
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higher order approximations can be obtained by including in the approxim,tiolns

to the functions f, f1l f2 terms of degree three or higher in K . For ex-

ample, in the third-order theory we must add to the expression for (j,, in

3(2.3) a term constant x K

If K is not time-independent, then the functions f, f and f in

(2.2) may depend not only on K , but also on time derivatives of K of

various orders, or alternatively on the history K(T) of the velocity gradient

up to and including the instant at which a is measured. In either case the

parity of these functions must be such that f changes sign and f,, f2 remain

unchanged when K and its time derivatives change sign simultaneously, or who,.

K(T) changes sign. The dependence of stress on the time derivatives of K , or

on its history, implies many interesting effects which are not present in New-

tonian fluids.

3. VISCOMETRIC FLOWS. There are a number of simple flows which can be

generated in non-Newtonian fluids, without the application of body forces, in

which the flow, referred to a local rectangular cartesian coordinate system ro-

tating with an appropriate angular velocity, is a rectilinear shearing flow. The

stress referred to this coordinate system, or to a local inertial coordinate sys-

tem instantaneously coinciding with it, is then given by (2.2) if appropriate

substitution is made for the velocity gradient K

Examples of such flows are:

(i) Poiseuille flow in a straight pipe of circular cross-section, or in

the annular region between two coaxial circular pipes, under a

constant pressure gradient.

(ii) Couette flow in the annular region between two infinite coaxial cylin-

ders, due to the rotation of the outer cylinder, the inner cylinder,

or both, with constant angular velocities.

(iii) Rectilinear shearing flow between infinite coaxial cylinders, in

which the flow is produced by the relative uniform motion, with con-

stant longitudinal velocity, of one cylinder relative to the other.

(iv) Superpositions of Couette flow, rectilinear shearing flow, and

Poiseuille flow between infinite coaxial cylinders are also visco-

metric flows.

(v) Torsional flow in which a circular cylindrical mass of fluid is con-

tained between rigid discs, one of which is held stationary, while

the other is rotated with constant angular velocity. (This is

- 1-i



strictly a viscometric fiow only if the effect of inertial forces

is neglected.)

(vi) Biconical torsional flow in which the fluid is contained between two

infinite cones with common apexes and axes, one or both of which are

rotated with constant angular velocities. As a special case one of

the cones may be a flat plate. (This is not strictly a viscometric

flow, but is very nearly so if inertial forces are neglected and the

semi-vertical angles of the cones are nearly equal.)

For the viscometric flows, the forces and velocity fields resulting from

given boundary conditions can be calculated by using equations (2.2) for the

stress.

For example, in the case of Poiseuille flow in a straight circular pipe,

we find that the fluid particles flow down the pipe in rectilinear paths, with

velocity w(r) at radial distance r from the axis of the pipe, where w is

given by the differential equation

,f 2 1
wf(w ) =- Pr , (3.1)

with w = 0 at the wall of the pipe. The prime denotes differentiation with

respect to r , and P denotes the pressure gradient along the pipe. The longi-

tudinal normal stress component is then given by

- f2- r f2/r dr + Pz , (3.2)

where f2 = f2 (w
2 ), and z is distance measured along the pipe. Equation

(3.1) leads, in general, to a non-parabolic distribution of velocity over the

cross-section of the pipe and a non-proportionality between the rate of dis-

charge and the pressure gradient. Equation (3.2) implies that, in general, the

normal force per unit area exerted by the fluid over a cross-section of the pipe

varies with r . For a Newtonian fluid it is, of course, constant.

For Couette flow the angular velocity w varies with radial distance r

from the axis of the cylinders in accordance with the formula

27,r3wf(r2 '2 ) = M , (3.3)

where M is the couple per unit length exerted on the cylinders, and w takes

the specified values on the cylindrical boundaries. One of the more interesting

-4-
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new features which arises is that the normal forces which are exerted by the

fluid on the bounding cylinders are no longer equal, even if inertial forces are

negLected, as they are in the case of a Newtonian fluid. The difference in the

radial normal stress components at the inner and outer cylinders is given by

0 = _2- fr1W2 )dr (3.4)

2 R2

where R1  and R2 are the radii of the outer and inner cylinders respectively

and o is the density of the fluid. Also, if we calculate the longitudinal

normal stress component a 33 , we obtain

a - - fr [l(f2 - f) + Prw 2]dr (3.5)033 f2 r l

The term Prw in the integral is an inertial term and is present whether or

not the fluid is Newtonian. The remaining terms in (3.5) vanish if the fluid is

Newtonian. An important effect of the non-constancy of a33 even when inertial

forces are neglected arises if we consider the axis of the system to be vertical

and the fluid to have initially a force-free horizontal surface. Then, the

rotation of the inner or outer cylinder may be expected to result in a distor-

tion of the free-surface, apart from that due to inertia. In practice it is

generally found that the fluid rises at the inner cylinder and falls at the outer

cylinders. This effect is called the rod-climbing effect and was discovered by

Garner and Nissan [1] during the Second World War. It was this discovery which

was largely responsible for attracting attention to the whole problem of the

mechanics of viscoelastic fluids. Results equivalent to those described above

were first given by Rivlin [3]. Their derivation was subsequently modified and

simplified by a number of people.

Recently the rod-climbing experiment has been analyzed by Joseph and his

collaborators [4,5,6] and investigated experimentally in the case when a cylin-

der of radius R rotates in a half-space of the non-Newtonian fluid

(R 2=R, R =O). For sufficiently slow flows the profile of the free-surface is

given approximately by

h = - a3/pg + constant , (3.6)

where 033 is given by (3.5) and the constant is adjusted so that the constancy

of volume of the fluid is preserved. g denotes the gravitational acceleration

t
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and h denotes the height of rise of the fluid above its level when the cylin-

der is not rotating. f, f and f2 in (3.4) and (3.5) are replaced by their

expressions in the second-order equations (2.3). More accurate calculations

were also carried out by Joseph and his collaborators by taking into account the

effect of surface tension. They found excellent agreement between the measured

and calculated profiles.

In (3.6), p denotes strictly the difference between the density of the

non-Newtonian fluid and air. A very striking effect arises if a Newtonian fluid

of density p say, very slightly less than that of the non-Newtonian fluid and

immiscible with it, is floated on the non-Newtonian fluid. Then in (3.6) we

must replace P by p - p and it is seen [7] that h can be amplified vir-

tually without limit by choosing the densities of the Newtonian and non-Newtonian

fluids to be sufficiently close. Of course, in practice, a limit will be set by

the instability of the profile when the magnitude of the gradient dh/dr becomes

too large.

4. GENERAL THEORY. The constitutive equations in §2 are limited to

flows which are, at any rate locally, rectilinear shearing flows. More general

constitutive equations can be formulated in a variety of ways. We shall consider

here the constitutive equation for the flow of a non-Newtonian fluid formulated

by Rivlin and Ericksen in 1955 [2]. The constitutive assumption which provides

the st.rting point is that the stress a depends not only on the velocity

gradient Vv , as in the case of a Newtonian fluid, but also on the gradients

of time derivatives of the velocity of various orders, thus:

a (VvV, Vv j)- p6 (4.1)

The term -p6 is introduced to express the fact that for an incompressible

fluid the flow is unchanged by the addition of a hydrostatic pressure.

If we superpose on the assumed deformation an arbitrary time-dependent

rigid rotation, the stress is rotated by a corresponding amount. This fact

leads to a restriction on the manner in which the stress can depend on the kine-

matic gradients Vv, Vv, etc. It is found that they must depend on them through

the so-called Rivlin-Ericksen tensors A1 ..., defined by

I [Vv + (Vv) ,

(4.2)aA

A _a +v.VA + (Vv)A + [(Vv)A]t

-6-
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where the dagger denotes the transpose. Thus,

a= .A ... .A 6

Isotropy of the fluid leads to restrictions on the manner in which the stress

can depend on the Rivlin-Ericksen tensors. Canonical forms expressing these

restrictions have been obtained by Spencer and Rivlin (see, for example, the

review article by Spencer [8]). They are rather complicated and will not be

given here. For rectilinear shearing flow the constitutive equation (4.3), to-

gether with the restrictions imposed by isotropy, reduce to equations (2.2).

Generally boundary value problems based on the constitutive equation

(4.3) are non-linear and their solution presents formidable difficulties.

Nevertheless, many problems of considerable interest can be solved where

linearization of the governing partial differential equation is possible. We

mention three classes of problems of this type:

(i) If the material is only slightly non-Newtonian, we can replace equation

(4.3) by

a = l 1A+c- (A 1 6....A) p6 , (4.4)

where c is a small parameter and a is an isotropic matrix function of the

argument matrices. By taking C = 0 , we arrive at the constitutive equation

for an incompressible Newtonian fluid. We can solve boundary value problems

based on the constitutive equation (4.4) by first solving the corresponding

problem for a Newtonian fluid and then obtaining a correction to this solution

by a perturbation procedure based on linearization of the governing equations

with respect to C

(ii) We have seen that it is possible to solve the viscometric flow problems

for a non-Newtonian fluid with some generality. Accordingly, problems in which

the flows are only slightly different from viscometric flows can be solved,

using a perturbation procedure involving linearization in the difference between

the actual velocity field and that corresponding to the neighboring viscometric

flow.

(iii) It was seen in §2 that, for rectilinear shearing flows, a hierarch. of

slow flow approximations to the expressions (2.2) for the stress can be con-

structed. A corresponding hierarchy based on (4.3) can be set up for more gen-

eral flows. We assume that the dependence of the stress on the Rivlin-Ericksen

tensors is sufficiently smooth so that it can be expressed as an isotropic

-7-
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matrix polynomial in the latter. We can then write

t=l + F2 +' + F- - p6, (4.5)

where

'1 - -2 = 'Y2 +L3-i1

F = 1 (tr A2)1 + 2 3 + 3 (AA12 + A 2)

F4 (y1tr A3+y2 tr A 2 Y3tr A 3)A1  (4.6)

+ (tr A2 ) (Y4A1+5A2) + Y6 2 7 ~ ~ +

+ y8(A1 3 + A3 1) + Y9% ,

where the a's, 3's and y's are constants and the o's have the same values

as those occurring in (2.3). Expressions for F with a > 4 can also be-a
readily obtained from the canonical representations of Rivlin and Spencer [8].

We observe, as did Coleman and Noll [9], that A , defined in (4.2),

is of dimensionality -a in time. Accordingly, A 1 is of dimensionality -1

in time, A 2 and A are of dimensionality -2, and so on; i.e. F is
formed by taking all the terms in the canonical expression for an isotropic

aritrix polynomial in the A's which are of dimensionality -a in time. By

considering a sufficiently severe retardation of the given flow, we can

approximate the stress by retaining only the term F1 in (4.5). For a less

severe retardation, we retain F1 and F2 P and so on.

Alternatively [10], in the case when the flow is steady-state, so that

3A /3t = 0 in (4.2), we note that A is homogeneous of degree a in v

and its spatial derivatives. Accordingly, F is homogeneous of degree a

in v and its spatial derivatives and the hierarchy of slow flow approximations

follows as before. For slow flows we write the velocity v in the form

v = CU + C 2u + Eu +... (4.7)
- -1 -2 -3 .

where c is a small parameter. Boundary value problems can then be solved for

u1 by linearizing the governing equations in e (which is equivalent to solving

the corresponding problem for a Newtonian fluid). u2, 3 ... are then

obtained as successive regular perturbations. Some examples of the results

obtained by this procedure are given in the next section.
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5. FLOW IN STRAIGHT PIPES AND RELATED PROBLEMS. If a Newtonian fluid
1

with viscosity A I is caused to flow in a straight pipe of uniform non-

circular cross-section under a uniform pressure gradient P , then, provided

the flow is not so fast that it becomes turbulent, each particle of the fluid

moves in a rectilinear longitudinal path with velocity w determined by the

equat ion

12w = 2P/( 1  (5.1)

and the no-slip boundary condition w = 0 on the pipe. It was found by

Ericksen [11] that if the fluid is non-Newtonian and we assume that, as in the

case of a Newtonian fluid, the particles of the fluid travel in rectilinear

longitudinal paths, then the differential equations for the determination of the

manner in which this longitudinal velocity and the hydrostatic pressure p in

the constitutive equation vary over the cross-section of the pipe, have, in

!eneral, no solution. The problem of determining the flow field was taken up

by Green and Rivlin [12] and by Langlois and Rivlin [13,10]. In [12] and [13]

the problem was discussed on the assumption that the fluid is only slightly non-

Newtonian and in [10] on the basis of the assumption that the flow is slow, so

that the slow flow approximations to the Rivlin-Ericksen constitutive equations

discussed in i can be used. It was found in [10] that if the flow is suffic-

iently slow so that the material properties are adequately described by the

second-order theory then the flow field is unaltered from that which obtains if

the first-order (i.e. Newtonian) theory is used. The third-order theory leads

to a change in the detailed distribution of the longitudinal velocity over the

cross-section of the pipe. However, the analysis based on the fourth-order

theory leads to the conclusion that purely longitudinal flow is no longer

possible. Superimposed on the longitudinal flow given by the third-order theory,

there is a steady flow in transverse planes, for which the stream-function

is given by an equation of the form

V Ct 4 (XlX , (5.2)

where

r = - 2(a1+B3) ( a ) - (Y+4y5 + 4y6+2y7) (5.3)

and the function 0 depends on the shape of the cross-section and can be

-9-
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calculated explicitly from the third-order solution. In the case when the pipe

has an elliptical cross-section

2 2
x1  x2
-2 +- = , (5.4)a2  b2

is given by

2 2 2 2 2 2(Hto xl1+a x 2-a b

3 1 (5a 4+6a2 b 2+5b)

where

H = -12 r a b (a b (5.6)
(a2+b 2 ) 3

The stream-function (5.5) represents an eddy in each of the four quadrants of

the elliptical cross-section.

We note that the transverse flow field involves only a single combination

of the constants occurring in the fourth-order Rivlin-Ericksen equations. It

has recently been shown [14] that this is generally true if we calculate, accor-

ding to the fourth-order theory, the transverse secondary flow associated with

any steady antiplane primary flow.

Another interesting effect which arises in the flow of a non-Newtonian

fluid through a pipe of non-circular cross-section was analyzed by Pipkin and

Rivlin [151.

For a Newtonian fluid the normal force exerted, per unit area, by the

fluid on the pipe does not change as we move round the periphery of a cross-

section of the pipe. This is no longer the case if the fluid is non-Newtonian.

Indeed, it was shown in [15] that it is given by
1

2 (at+ Ot a) 2
22 4 3  p2Vw'Vw + Px3 + constant, (5.7)
a1

where x3  is distance measured along the tube.

Now suppose that the elliptical pipe is tilted at a small angle $ to

the horizontal, the axes of the elliptical cross-sections of length 2a also

being horizontal. Suppose also that the fluid flows down the pipe slowly under

the action of gravity. The thrust T per unit area exerted on the tilted

-10-* - . -~A~W



mid-plane in the pipe by the fluid above it can be calculated on the bas:is of

the second-order theory as

T = 2(a + rt i Pb (2b 2+a 2)x - a 2(a 2+b2) + ogxsin , (5.8)
2 

3 ai (a 2 +b 2 )  L i

where x1  denotes the distance measured horizontally from the center of the

cross-section and x3  is the length measured along the tube from its highest

point to the cross-section considered. It follows, from reasoning similar to

that employed in discussing the free-surface profile in the rod-climbing experi-

ment, that for slow flow of a non-Newtonian fluid in a tilted channel with semi-

elliptical cross-section, the free surface of the fluid filling the channel will,

in general, have a curved profile, the height h of this profile above some

ambient level being given approximately by

h- 2 + 4 3 pgb sin (2b 2 +a 2 )x 2 _ a 2 (a 2 +b2)] + constant . (5.9)

L9 aj a 2+b 2) IL 1b)

The constant in (5.9) is, of course, determined by the condition that the cross-

sectional area of the fluid remains that of the elliptical cross-section. If
1

the fluid is Newtonian, a2 + 1 a3 = 0 and the profile is no longer curved. For

non-Newtonian fluids which have been studied experimentally, it is found that
1

a2 + 4 3 < 0 , so that, from (5.9), the fluid rises above the ambient level at

the center of the free-surface and falls at its edges. Of course, analogous

results follow for channels with other cross-sectional shapes. The calculation

of the free-surface profiles was first carried out by Wineman and Pipkin 116]

and later modified by Sturges and Joseph 1171 to include the effects of surface

tension. The effect was studied experimentally by Tanner [181.

One may expect that if the calculations were carried out on the basis of

the fourth-order Rivlin-Ericksen theory, one would find that a steady secondary

flow in the cross-sectional planes will be imposed on the longitudinal flow.

That this is indeed the case was shown by Sturges and Joseph [17] except in the

case when the channel has a semi-circular cross-section. In that case secondary

transverse flows arise only when the sixth-order constitutive equations are

adopted. The particular status of the semi-circular cross-section is less sur-

prising when we consider that no transverse secondary flows arise in Poiseuille

flow of a non-Newtonian fluid through a pipe of circular cross-section.

We have seen that in Poiseuille flow of a non-Newtonian fluid through a
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straight pipe of non-circular cross-section, the velocity distribution, calcu-

lated according to the second-order theory, is the same as that given by the

first-order - i.e. Newtonian - theory. However, the force per unit area exerted

normally by the fluid on the pipe varies as we move round the periphery of a

cross-section. The resultant force exerted by the fluid in a transverse direction

is however necessarily zero.

We now consider the fluid to flow in the annular region between two infin-

ite circular cylinders with parallel axes, either as the result of the uniform

relative longitudinal motion of the cylinders, or as a result of the application

of a uniform longitudinal pressure gradient. In either case, it is found that

the fluid exerts a resultant transverse force on the inner cylinder and, of

course, an equal and opposite transverse force on the outer cylinder.

If the flow is due to a uniform relative motion of the cylinders with

velocity V , then the force on the inner cylinder, measured per unit length

and c:ilculitd on the basis of the second-order constitutive equation, is given

by 191
12

T(a +- 3 )V 2/R 1 , (5.10)

where T is a non-dimensional function of R = R2/R1 , the ratio between the

radii of the inner and outer cylinders respectively, and of c/(R 1 - R2) , where

f is the distance between the cylinder axes. The force is positive if it

tends to drive the inner cylinder towards coaxiality with the outer cylinder and

is negative if it tends to drive it towards contact. The manner in which T

depends on R and c is shown in Fig.l(a). We note that T is negative and,
1

since we may expect that in practical situations c2 + 4 O3 will be negative,

we see that the force tends to drive the cylinders towards coaxiality. This

contrasts with the situation which arises when the flow results from a uniform

pressure gradient P . Then, the transverse force per unit length is given by

[201
2 23

(a+ )P (5.11)

where T is again a non-dimensional function of K and : , its dependence on1

which is shown in Fig.l(b). We see that if a 2+ 4 c 3 < 0 , this force tends to

drive the cylinders towards contact.

6. FLOW BETWEEN ROTATING ECCENTRIC CYLINDERS AND RELATED PROBLEMS. We

now suppose that in the eccentric cylinder arrangement of §5, plane flow is

-12-
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produced in the annular region between the cylinders by rotating one or both of

the cylinders about their respective axes with constant angular velocities.

According to a thc-rem due to Tanner [21], the flow field in a steady plane

problem, in which the velocities are specified on the boundaries, is the same

whether calculated on the basis of the first-order or second-order constitutive

equations . In particular, this applies to the flow field in the annular region

between the cylinders. However, the stress fields and consequently the forces

exerted on the cyl ": irs by the fluid are different. It is found that, on the

basis of the second-r'der theory, and with the neglect of inertial forces, a

resultant transverse firce is exerted by thf fluid on the inner cylinder. This

is given, per unit lengt,' of the cylinder, by [23]

at R 1T1 + TP 1 ) + TQ 2) ,(6.1)

where T, T and T are the non-dimensional functions of R and c plotted

in Fig.2, and 1 and Q2 are the constant angular velocities of the outer and

inner cylinders. If this force is positive it tends to drive the cylinders to-
wards coaxiality. In practice a 2 is negative and, from Fig.2,it is seen that

T, T and T are all negative. So, provided that 01 and Q2 are of the same

sign (i.e. the cylinders are rotating in the same sense) the transverse, or lift,

force tends to drive the inner cylinder towards coaxiality with the outer. In

fact it can be shown numerically that this is also the case when 1 and 12

are of opposite signs.

We may contrast the manner in which the lift force depends on R and

in the case discussed with that which obtains when the fluid is Newtonian but

inertial forces are not neglected. The lift force, per unit length of the cylin-

der, is then given, in the linearized inertial approximation, by [24,25]

pR3(T;2 + T1211 + TQ2) , (6.2)

where T, T and T are the non-dimensional functions of R and c plotted in

Fig.3, p is the density of the fluid and p is its viscosity. It is seen

that T is negative, while both T and T are negative for the lower

* Strictly, Tanner proved this theorem only in the case when inertial effects

are neglected. Recently, however, a slight extension of the theorem was made
j by Kazakia and Rivlin [221 which renders it also applicable to linearized
inertial approximations to the flow fields.

-13-
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eccentricities and positive for the higher eccentricities. The lift force

accordingly tends to drive the inner cylinder towards some intermediate position

between coaxiality and contact with the outer cylinder.

The lift force (6.1) has been calculated for a non-Newtonian fluid on the

basis of the second-order theory and with the total neglect of inertia. The

lift force (6.2) has been calculated for a Newtonian fluid with the linearized

inertial approximation. It has been shown [22] that in order to obtain the lift

force for a non-Newtonian fluid on the basis of the second-order theory, but in-

cluding the effect of inertia in the ljnearized inertial approximation, we have

merely to add the forces given in (6.1) and (6.2), with p~ = -
21.

From the above results we can derive [25] corresponding results for some

different related systems. Suppose that we consider our eccentric cylinder sys-

tem to sit on a turntable rotating about the axis of the outer cylinder with con-

stant angular velocity -Q2 . In order that the motion of the fluid, referred to

a coordinate system fixed to the turntable, shall be same as that which obtains

in the previous problem, body forces must be applied throughout the fluid to bal-

ance the inertial and Coriolis forces which are called into play by the motion of

the turntable. It emerges that these are derivable from a potential function and

can, accordingly, be absorbed into the hydrostatic pressure term in the ex-

pression for the stress. The effect of the rotation of the turntable is thus to

superpose on the motion previously obtained a rigid rotation with angular

velocity -n about the axis of the outer cylinder and to modify the stress

field and consequently the forces exerted by the fluid on the cylinders. Again

from the point of view of an inertial reference system, the outer cylinder is

rotating with angular velocity Q,-S? about its axis, while the inner cylinder is

rotating about its axis with angular velocity Q 2 and is simultaneously execu-

ting a planetary motion about the axis of the outer cylinder with angular

velocity -n2 . This may be regarded as an idealized stirrer arrangement.

Another interesting result can be obtained by considering the limiting

situation in which R + o, E:~ and P 0 in such a way that R Q has

a constant value, V say, and the value of R c remains constant. The

configuration which is thus obtained is an infinite cylinder of radius R 2
moving, in an infinite half-space of the fluid bounded by a rigid wall, with

velocity V parallel to the wall and perpendicular to its own length, while

simultaneously rotating about its axis with angular velocity Q2 While the

calculated forces and flow field obtained in this way are correct if inertia is

-14-



neglected, they do not properly take account of inertial effects. Thi.; is, no

doubt, due to the fact that the expression of the solution in powers of the

Reynolds number, on which the linearized inertial approximation is based, breaks

down when the fluid is of infinite extent.

7. EFFECT OF VIBRATION ON POISFUItLL FLOW. In previous sections we have

discussed problems in which the flows are either steady or derivable from steady

flows by the superposition of a rigid motion. In the present section we discuss

a class of unsteady flows. The analysis of these flows was motivated by an

experiment of Mancro and 11ena 1261. In their experiment a polymer solution

flows through a straight pipe of circular cross-section under a constant pressure

gradient. Simultaneously, the tube is subjected to a longitudinal vibration and

the effect of this vibration on the time-averaged rate of discharge of the fluid

is measured. It is found that it may be increased many times by the vihration.

In contrast, the time-averaged rate of discharge is unchanged if the fluid is

Newtonian.

If the fluid is Newtonian and has viscosity r , then the velocity of the

fluid is longitudinal and, at a distance r from the axis of the pipe, is given

by

( (-ra + L(r)sin wt + M(r)cos ',t (7.1)

wh e re

L(r) V ber va ber yr + bei va bei vr

ber2 va + bei 2va
(7.2)

M(r) V her va bei vr - bei va ber yr

ber2va + bei 2Va

with
2

v = pw/r . (7.3)

In these equations a denotes the radius of the pipe and the vibration velo-

city of the pipe is V sin wt .

It is easily shown that for a non-Newtonian fluid the velocity of the

fluid particles is longitudinal, whatever the constitutive equation adopted.

Moreover, it emerges that we need only consider the constitutive equation for

the shear component, u say, of the stress in order to calculate the mean rate

of discharge of the fluid. We may write this constitutive equation in the form

-1I5-



a = nK + eF[K(T)] , (7.4)

where K(T) is the velocity gradient at time T and F denotes a functional

of the history of the velocity gradient from time T = -0 to the time t at

which the stress is measured. n and C are constants. Alternatively, we may

write the constitutive equation for o in the form

a = nK + Cf(K,K,K .... ) (7.5)

where K,,... are the velocity gradient and its time derivatives of

various orders measured at time t .

The mean rate of discharge Q is then given by [27)

Q 7p4 S ,aw2
rPa h  IT'a J2  2

8n + f r F[K(T)]dtdr , (7.6)

0 0
or

rpa h  + W a +27/ 2
Q = 8rq + r2f(K,' K,...)dtdr . (7.7)

0 0

If C is sufficiently small we can calculate Q by replacing the actual

velocity gradient field by that appropriate to the Newtonian case, i.e. by the

velocity gradient field calculated from (7.1). In this way the effect on the

time-averaged rate of discharge of various types of term in the constitutive

equation for a slightly non-Newtonian fluid can be examined. For example, it is

seen that if the constitutive equation

0 = 4 + + flK + n l + ; K ) , (7.8)

where the n's are constants, is adopted, then Q is given by [27]

Pa h  np3a6rn I  nV )2 !
a a V - ---- 1 + 36 A , (7.9)

Sri 48nl La

whore A is defined by

av(ber 2av + bei 2av)(A+1)

a2v2 (ber av ber'av + bei av bei'av)

+ 2(ber av bei'av - bei av ber'av) (7.10)

and v is given by = . (7.11)
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We note that, of the non-Newtonian terms in (7.8). only the term in K3 contri-

butes to the change of the time-averaged rate of discharge as a result of the

superposed vibration. However, this term contributes to Q through two terms,

one of which is independent of the presence of a superposed vibration and the

other is not. We note that both of these terms give increases in Q if n) is

negative, as we may expect it to be for a polymer solution.

The analysis of the above problem has led to a number of further predic-

tions regarding the effect, on the time-averaged rate of discharge of a polymer

solution, of superposed vibrations [27,28]. For example, we may also expect that

rotational vibration of the pipe will increase the time-averaged rate of dis-

charge. Also, non-zero time-averaged rates of discharge may be obtained, even

when no pressure gradient is applied, if two, or more, sinusoidal vibrations,

with appropriately related frequencies, are applied to the pipe.

Indeed, the calculations in [27,28] draw attention to the whole range of

rectification and modulation phenomena in non-Newtonian fluids. These will dif-

fer from the usual discussions of rectification and modulation phenomena in many

other areas of physics, as a result of their possible three-dimensional character.

For example, Kazakia and Rivlin [29] have studied the effect of a super-

posed longitudinal vibration on the flow of a non-Newtonian fluid, under a uni-

form pressure gradient, thr ugh a straight pipe of non-circular cross-section.

They found that if the second-order Rivlin-Ericksen constitutive equation is

adopted, it is predicted that a secondary flow in transverse planes will be

superposed on the rectilinear flow. This is, of course, an unsteady flow, but

has a non-zero time-averaged velocity field. The stream-lines for this field

are shown in Fig.4 in the case when the cross-section of the pipe is rectangular

with various aspect ratios. It is seen that in the case when the cross-section

is square there are two eddies in each quadrant. As the aspect ratio changes

from unity one of these eddies grows at the expense of the other and eventually

seems to disappear. It is not, however, certain that it does disappear, since

the stream-line patterns shown in Fig.4 were obtained by a finite element calcu-

lation and we cannot be certain that there is no eddy of dimensions smaller than

those of the finite elements.
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Fig.4 Stream-lines for time-averaged transverse flow in rectangular pipe for
aspect ratios 1, 0.9, 0.8; 0.5 and a(wp/n)" = 1 (top, left quadrant).
[a = larger dimension of quadrant, q = viscosity, w = angular
frequency of vibration, p = density of fluid.]

Reprinted from J. Non-Newtonian Fluid Mechanics.
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CENTRIFUGAL INSTABILITIES IN FINITE CONTAINERS

Philip Hall, Mathematical Sciences Department,
Rensselaer Polytechnic Institute, Troy, New Yckrl ] .1.81

Abstract

The effect of endwalls in a Taylor vortex apparatus is .

gated using nonlinear stability theory. It is shown that one impTiLt-

ant consequence of the finiteness of any such apparatus is that the

initial vortex motion develops smoothly with increasing Taylor number

and not as a bifurcation from circumferential flow. Moreocver, in

short cylinders, the dominant nonlinearty motions is quadratic and

not cubic as is well known for the infinite problem.

1. Introduction

In this paper we discuss the response of circumferential flows

in finite cylinders to centrifugal instabilities. In very lonc

containers it is observed experimentally that the disturbed flow

is periodic along the axes of the cylinders and this flow is usually

called a Taylor-vortex flow. Until recently the large number of

theoretical papers on this problem have assumed that the cylinders

are infinitely long. If this assumption is made, and tho inner

cylinder rotates, then linear stability theory predicts tihat this

flow becomes unstable when the angular velocity of the inner cylinder

reaches a certain critical value. If the angular velocity is

increased slightly above this value, then nonlinear stability theo-y

shows that a stable supercritical equilibrium flow exists. Hiowever,

if the angular velocity is further increased, the axisymmetric

Taylor vortex flow itself becomes unstable to wavy vortex modes

which are periodic along the axes of the cylinders and around the

cylinders.

Suppose then that we now restrict the cylinders to be of finite

length and that the ends of the cylinders are at rest. The basic

flow set up when the inner cylinder rotates is now three-dimensional

and can only be calculated numerically unleqs the speed of rotation

of the inner cylinder is small. Thus even before the onset of any

instabilities, a circulatory flow exists in the cylinders. Related

studies in B6nard convection theory by Daniels (1977) and Hall and

-23-
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Walton (1977) suggest that this flow develops smoothly into a Taylor

flow, without any bifurcations taking place. In addition

to the three-dimensional nature of the basic flow, any disturbances

to the flow will be influenced by the end walls which constrain

the possible fluid motions between the cylinders. We shall concen-

trate on the latter effect here and describe the bifurcation problem

in cylinders having end walls rotating such that the basic flow is

purely circumferential. For such flows we show that if the length
of the cylinders is the same order as their separation, then the

amplitude equations determining finite amplitude disturbances have

quadratic nonlinearities.

The linear stability theory for the flow which we consider

here has recently been discussed by Blennerhassett and Hall (1979),

hereafter referred to as I. In that paper it was found that the

clas5; of unstable disturbances to the flow could be divided into

those having axial velocity even about the mid-plane of the cylinders

and those odd about that plane. Depending on L, the nondimensional

length of the cylinders, the most dangerous disturbance can be

either odd or even. In fact at a given value of L, there exists
an infinite sequence of values for 0, the angular velocity of the

inner cylinder, at which disturbances become unstable. For large

values of L the results given in I show that the critical value

of 2 differs from its value for the infinite problem by an amount

of order L-2 .

2. Formulation of the problem

We consider the flow of a viscous incompressible fluid of

kinematic viscosity v between concentric cylinders of radii R0
and R0 + d and of common length 2Ld. The inner cylinder rotates

with angular velocity Q whilst the outer cylinder is at rest. We

restrict our attention to the small gap limit 4- - 0 and define

dimensionless coordinates x and $ by

r-R0
-d

(2.la,b)

*= zd

-24-
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where r is the distance of any point from the common axis of the

cylinders whilst z measures distance along that axis. The boundaries

of the cylinders are defined by x = 0,1 and = +L.d
If 2- < 1, and the cylinders are infinitely long, the fluid

R0

moves with azimuthal velocity OR0 (0,l-x,0). We assume that the

ends of the cylinders in the problem to be considered here rotate

with this velocity so that the basic flow between the cylinders is

purely circumferential.

We now suppose that this flow is perturbed in an axisymmetric
-u V RRoV

manner such that the new velocity field is (-u, OR0 (1-x ) + 2 I

- w). We note that the azimuthal component of the disturbance

velocity is scaled on R0 whilst the radial and axial components

are scaled on 2- , the factor 2 and the minus sign are introduced
2d

for convenience. We further note that the perturbation pressure p
associated with the above disturbance is independent of the polar

angle 0. The Taylor number T associated with the basic flow is

defined by

21- R0 d3

T 2 (2.2)
V

We define an operator k and a time variable T* by

k - + D2 (2.3)
ax a

and

T* = V 7 t . (2.4)
d

The equations which determine u, v, w are obtained by eliminating

the pressure from the first and third momentum equations and by

using the continuity equation. We obtain

( -T-) u- T(l-x) - 1 1 Q2x '

(2.5a,b,c)
( -- u = - Ux + w =0
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where
1 2Q1 = UUx+ wu - -Tv,

Q2 = UWx + ww 4 ' (2.6a,b,c)

Q3 =uvx + wv

We must solve the above partial differential system subject to the

no-slip conditions at the ends and curved surfaces of the cylinders:

u= v =w =0, x 0,l
(2.7a,b)

u =v w 0, P =+L

3. Finite amplitude solutions for L - 0(1)

In I it was shown that depending on the length of the cylinders

the most dangerous disturbance can have axial velocity component

even or odd about the plane q = 0. The main results of I are shown

here in Figure 1 reproduced from I. We see that in addition to

the first odd and even eigencurves, there are further higher modes.

In fact, there is an infinite sequence of pairs of odd and even

eigencurves which wrap around each other when L varies. We denote

the first even and odd critical Taylor numbers by TE(L) and T0 (L)

and near any point of intersection (L*,T*) of these curves we can

write

T E(L) = T* + (L-L*)T * + ...

(3. la,b)
T0 (L) = T* + (L-L*)T0* +

We note that all the intersection points of the curves shown in

Figure 1 are such that T E*, T 0* are both negative. Thus if for

example TE* > T 0* the even mode is the most dangerous for L < L*
whilst the odd mode becomes the most dangerous for L > L*. We now

assume that the point (L,T) is close to the intersection point

(L*,T*). More precisely, we write

T = T* + cT1 + 2T 2 + ...

(3.2a,b)
L = L* + cL 1
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where c is small and positive whilst Li, Ti , T2, etc., are prescribed0
constants of order s . A straightforward analysis of the linearized

form of (2.5) shows that the growth rates of the first odd and even

modes are of order c when T - T*are of order c. Thus we define a

slow time variable T by

T = CT* (3.3)
'U,

We now expand the disturbance velocity /v in the form

is u u°  /Ue
e 2o\ '2e

V = Elv) + s/v O  + C v + C v + (3.4)e +Vjo2o V2e"""' "

wW e w Wo / \W2o W2e

where subscripts o and e denote velocity fields having axial veloci-

ties odd and even about the plane z = 0 respectively.

The functions u e, uo are just the linear eigenfunctions given

in I. In fact, these modes have amplitudes A(T) and B(T) where
2

these amplitude functions are determined at order £ We find that

the "amplitude equations" determining A and B are

e dA = fe2T + e L }A + e AB
1 F 2 1 3 1 4

fdB = f2 T + f3L 1B + f A 2 + f B 2 (3.5a,b)

1d-r 2 1 3 1 4 r5

where elfl, etc., must be calculated numerically at each point

of intersection of the odd and even eigencurves. Some values of

these coefficients are given by Hall (1979).

4. The solutions of the amplitude equations for L . 0(I) and

discussion.

In this section we shall discuss the ecuilibrium solutions

of (3.5a,b) for the particular values of the coefficients el, f1
obtained by Hall (1979). The three equilibrium solutions (A E,BE )
of these equations are obtained by setting dA dB 0 and solvingdT -T n ovn

the resulting equations to give
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I. AE =BE= 0,

II. A =0 b {f2Tl + f Ll 1EE 3 2 1 1 5
(4. la,b,c)

III. B - {e2T 1 + e3Ll}e -1

f2Ti + f3 Ll f5 [e2 TI + e3L 1/2

A E e 2_T 1 + e3L l e2

fe4  4)

The first solution is the trivial one which corresponds to the

unperturbed state. The second solution represents a finite ampli-

tude odd disturbance which exists for all values of L1 and TI .

(We note that odd and even modes correspond to disturbance velocity

fields which are respectively symmetric and antisymmetric about the

mid plane = 0,) Finally, the third type of solution corresponds

to a disturbance which is neither odd nor even. Since AE must be

real, this disturbance does not exist for all values of L and T

However, it is easy to show that, for the values calculated by
Hall (1979), this solution exists for T1 in the range between

-i1

Tj -e e ,1 and T = T ,ef fI f ef 1
! =-3 1 2 1 lB = L![e 3 f 5 - ear 3 ] [e 4 f 2 - e 2 f5]-1

The latter value corresponds to the T coordinate of the point
of intersection of the lines B - {f T + f3L }f and

2 21 31 5
BE {e2T1 + e3L l }e 4

- I .

The stability of the ecquilibrium solutions can be investigated

in the usual way. Ue perturb the equilibrium flow by writing

A = AE + ae , B = BE + be'
T

where a,b are small and independent of T. Substituting for A and B

from above into (3.20) and retaining only linear terms in a,b, ve

obtain

ea e2T1 + e 3 L1 + e4 BEI + b{e AE

flab a{2f4A} + b{f2 T1 + f 3 L, + 2f5BE}
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The growth rates all a2 are determined from the roots of the quadratic

equation which ensures the existence of a nontrivial solution to the

above homogeneous equations. If the real parts of a1 and a2 are both

negative, the equilibrium flow is stable. If either growth rate

has positive real part, the equilibrium flow is unstable. The three

equilibrium solutions (4.1) corresponding to the different values

of (L*,T*) given by Hall (1979) were investigated in this way.

The stability properties of the equilibrium solution depend on the

coefficients el, fl, etc., at any value of (L*,T*). However,

surprisingly enough, at any value of (L*,T*) there are only two

distinct cases to consider.

Case a. The most dangerous mode an odd disturbance

Suppose that L1 is such that the most dangerous mode is an odd

mode. In this case the trivial solution is stable until the bifur-
f-1

cation point T1 = - f3 L f and for T1 greater than this value

it is unstable. The equilibrium solution II is stable for-1- 3Llf -1 .-l and unstable for T1 < - fl. Thus the zero

solution and the type II equilibrium flow exchange stability charac-

teristics at the bifurcation point T1 = - f3 L f - The third

type of solution, III, is unstable wherever it exists. These results

are summarized graphically in Figure 2a where continuous lines

represent stable solutions and dotted lines represent unstable

solutions. We conclude that when L! is held fixed and T1 increased,

then, if the odd mode is the most dangerous, the unperturbed flow

is stable for T1 < - f3L1 f2
- and for T1 greater than this value

an odd disturbance with magnitude proportional to T1 exists. This

latter flow corresponds to an even number of cells in the range

-L < < L.

Case b. The most dangerous mode an even disturbance

The stability characteristics of the equilibrium solutions in

this case are summarized in Figure 2b. We note that for

T1 < -e3L 1e2  the only stable configuration is the unperturbed

state. If T1 lies in the range e3 L1 e2  , TlB), the only stable

-29-
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equilibrium flow is a type III solution corresponding to a distur-

bance neither odd nor even in . However, this solution exists

only for T1 in this range and for T1 > TIB the only stable solution

is an odd disturbance corresponding to II in (4.1).

Thus, we conclude that, in general, the most likely disturbance

to be observed is an odd mode; the mixed mode exists for a finite
range of values for T1 and is only stable when the most dangerous

mode of linear theory has axial velocity even in 0.

Finally, we briefly describe the effect of applying more

realistic conditions at the ends of the cylinders. It has been

shown by Hall (1979) that if we perturb the end conditions towards

the no-slip conditions appropriate to the case of fixed rigid

endwalls, then (3.5a,b) are modified to give
dA

e { e2 T1 + e3 L1 14 + e4AB

fldB _ { f T + f L }B + f A 2 + f 5 2 + f
ldT 2 1 3 1 4 - 5 6

The introduction of the constant term in the second equation is

a direct consequence of the more realistic end conditions. The

effect of this term on the equilibrium solutions of the amplitude

equations is dramatic. We now find that the solution A = B = 0
of (3.5) is no longer a solution of the more realistic problem.
An investigation of the above equations shows that there exists

a smoothly developing odd mode (A = 0) for all values of T! . In
some cases, this smoothly developing solution becomes unstable to

mixed mode solutions with both A and B nonzero.

This work was partially supported by the Army Research Office.
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THE HISTORY OF THE UTILIZATION OF EULERIAN HYDRODYNAMIC
COMPUTER CODES AT THE BALLISTIC RESEARCH LABORATORY

John T. Harrison
Te aed Charge BranchTM alliscs Division

Ballistic Research Laboratory
US Army Research and Development Command

Aberdeen Proving Ground, MD 21005

ABSTRACT. The Ballistic Research Laboratory has been involved with the
development and utilization of hydrodynamic computer codes for over
twenty years. The final product of one of these developmental efforts is
the two-dimensional, Eulerian, finite-difference, hydrodgnamic code
called 'HELP'. This paper will trace its history and point out some
of its applications.

The HELP code has evolved from four major hydrodynamic programs
which were developed over a twenty-year period. Its genesis is the orig-
inal Particle-In-Cell (PIC) code written by M.U. Evans and F. Harlow at
the Los Alamos Scientific Laboratory. The next step was the OIL code
which replaced the discrete particle mass transport scheme by a contin-
uum. The RPM code, which repesented the material as having rigid per-
fectly-plastic properties, was third in the series. Finaliy, the HELP
code was developed with a Multi-materia:l capability and representing
the material properties as elastic-plastic.

These codes have been used in a wide range of problems in continuum
mechanics. Their evolution has had a immense infuence on research and
development in both government and industry.

I. INTRODUCTION. The Ballistic Research Laboratory (BRL) has a rich
history of advancements in computer technology. Thi3s has enabled the
accomplishment of some remarkabe studies in a wide scope of fields, and
continuum mechanics is one of these. It is now possible to examine in
detail such problems as:

1. The penetration produced by a hypervelocitg impact.
2. The cratering produced by a 'chunky' fragment upon impact.
3. The detonation of a stick of explosive and corresponding

deformation of the adjacent materials, and many more oi
similar complexity.

Two things were required to accomplish these investigations. One was
the development of the the computers and computer languages themselves.
The other was the development of the mathematical techniques that trans-
form the basic differential equations into forms suitable for numerical
analysis. This gaper will concentrate on the historical develooment and
utilization of the latter, but it is useful to mention briefly the com-
puters which were available to the numerical analyst at the BRL from a
historical standpoint E13.

First, the world's premier high-speed,electronic digital computer,
the ENIAC, was operational at the BRL from 1947 to the early 50's. This
was a decimal computer and programmable only in machine language.

Second, EDVAC was the first binary and stored program computer. It
was operational from 1951 to the early 60's. This too was programmable
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only in machine Language.

Third, the ORDUAC was operational from the earlg 50's to the mid-
1S60's. This computer was programmable in both a pusedo-language termed
assemblg language and a machine language.

Fourth, BRLESC I was operational from the earlg 60's to the mid 79's.
Cornuter systems analysts at the BRL developed a high level tan uage
called Formula and Assembly Translator, FORAST. This high levey tang-
uae was designed for the scientific programmer and was operational until
1gb8 when FORTRAN IV was adopted.

Fifth, BRLESC II was operational from the mid 60's to the mid 70's
when both it and BRLESC I were replaced by a Control Data Corporation,
Cyber 170 computing system.

Beyond this, we will not go into computers in any great detail.
Instead, we examine the initial comprehensive research project which
was instituted to obtain solutions to U.S. Army related problems. This
initial project examined, in detail, the numerical scheme used to obtain
these solutions. This paper will cover the following:

1. The personnel responsible for and involved with the project.
2. The problems in continuum mechanics for which solutions were

needed.
3. The governing equations and underlying approximations consid-

ered to obtain suitable solutions to the problems and the
numerical schemes used.

4. A brief statement about the results of this inital study
and observations concerning future code development work.

As a result of the initial investigation, a series of improvements
to this numerical scheme where sup orted by the BRL over a seventeen gear
period. The chronological order of development for those Eulerian
umerical codes used at the BRL will be presented. Finally, a 'Family

Tree' of Eulertan hydrodynamic codes will place each in their respective
branch.

Many of these codes are still being used today. It is the intent of
this paper to not only familiarize those using these codes with their
origin, but also to acquaint them to the part that the BRL played in
their evolution.

II. BACKGROUND. The initial theoretical analysis, code development,
and experimental work was a combined comprehensive research program in
the field of hypervelocit impact. The work was initiated in ay 1962
under an Advanced Research Projects Agency (ARPA) Order No. 71-6 . This
resulted from a series of recommendations by Dr. R.E. Duff, who, as a
member of the Institute for Defense Analysis, prepared a planning docu-
ment to assist personnel at ARPA.

The experimental work and overall responsibility for the project
was delegated to the Army's Ballistic Research Laboratories. The
theoretical analysis and code development work was completed by personnel
at the General AXomic Division (GA MD, General Dynamics under Contract
No. DA-04-495-AMC-116(X). In addition to the the ARPA contract, Army
funds were used to support a modest theoretical effort at Drexel Ins i-
tute of Technology under Contract No. DA-36-034-ORD-3672-RD.

Thi4 research program was a cooperative venture between eight scient-
I-ts said the overall coordinator for the project, Dr. F.E. Alson of the
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BRL. Others at the 3RL included J.H. Kineke, J.T. Fra=ier, and U.M.
3oyle. Jork at the General Atomics Divison of General Oynamics was under
the technical supervision of J.M. Ualsh. Others there included J.E.
Johnson, J.K. Dienes, and J.H. Tilttotson. Lork at the Drexel !nsttute
of Technology was under the technical supervision of Pei Chi Chou.

Central to the program was the development and use of the hydro-
dynamic computer code called 'OIL'0:2. sL a a two-zcace dlmensionz
and time dependent code with only one- aterial and based'umon the
Euterian or fixed grid numerical formulat~on. This code i closel
related to the Particle-In-Cetl (PIC) code [4,53. It was develoved
by modifying the General Atomic PIC code named SHELL S] b'y the intro-
duc ion of a continuous mass transport scheme.

The OIL code was used to obtain numerical solutions for the initial
interaction between a projectile and target in an hypervetocit- situa-
tion. This 3imulated the penetration of-a continuous shaped charge
jet. A 3econd problem was also studied during this initial investiga-
tion. This was the 3tudq of craters produced by 'chunky6 fraMents. It
analyned the ctering eifectzproduced by a shaped charge jet
after it has broken into many dicrete particles or by a frmgmenting
munition. Experimental evidence showed that the initial interaction
of the projectile and target, in both cases, is a hudrodunamic proczaz,
which can ze treated a3 a problem in compre3zible flu~d 'Ynamfic. This
study of the hydrodynamic phase of the interaction lead to 3ignifiCient
conclusions concerning the terminal effects of the impact.

Ill. GOVERNING EQUATIONS. The Npenetration of a target by a projectile
can be described in terms of clasical hydrodynamicz. "The cratering
problem also has a hydodynamic phase during the Initial interaction ot
he target and projectite which can be treated as a problem in compress-
ible fluid dynamicz. The leading edge of the interactlon is defined by a
shock front across which the flow satisfies the Rankine-Hugoniot equa-
tions E73:

POU = pl(U - ul) , (1)

P " P0 
= P0 Uuj , (2)

E1 - Eo = h(P1 
+ P0 )(Vo - Vi) (3)

Elsewhere, the equations for continuous compressible flow C71 are assumed

to apply: 30 01(
t + 7 pU 4)

au

5t + VVP = 0, (5)

dE dV
dt dt (6)

Here the derivatea d/dt denote the usual convective derivatives; i.e.,

df/dt Wa + U (7f).- T-hi s3et of equations is completed by stecifq-
ing an equation of state which is taken to be of the general f{rm"

P * f (p,E). (7)
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To provide a realistic thermodynamic description of the material, theequation of state is constructed b4 fitting available experaintal data.The reedng equations are solvea numerically by the OIL code.

An exatremely useful property of the preceding ecuations is that the
solutions can be scaled; i.e., An Impact, for which the characteristic
length of the projectile is L o , has the same hydroiynamic solution as a

eometricatlg similar impact (same velocity) with the characteristic
ength FLO , except that all times and distances are changed by the factor

F. Intensive variables such as pressure, density, and velocity remain
unchanged under the transformation.

IU. UNDERLYING APPROXIMATIONS. The princitat approximations needed to
derive Equations 4-6 are: (1) diffusion eWfelt (such as those due to
viscosity, thermal conduction, and radiation) are negligible within the
continuous flow; and (2) the tensor stresses due to material strength
can be negelected. These aoproximation and the previously stated
siMpte scaling law are ctos gl related.

.The formoer aproxiiationz, i.e. the diffusion effects, would
introduce higher -order derivatives in the continuous-flow equations.
This would cause a devarture from the simple scaling taws. Therefore,
since the main body ol experimental evidence at that time indicated
that simple scaling was a vatid approzzmation, neglecting the effects
of diffusion was a good approximation.

The latter approximation is valid by definition for the so-called
hydrodynamic phase of the LIpact process, which is taken to be that
earlg part of the interaction during which the equation-of-state pres-
aures are large compared to the material ieLd strengths. Althou.h
strength effects are negligible in the hycrodynamic phase, it is neces-
sarl to note that the ordinary streZs-strain effects do staLe; whereas
the tgme-dependence within the stress-3train relations causes a breakdown
in Sinp I caling.

V. CONCLUSIONS AND RECOMMENDATIONS. Many aspects of eizerimental
and theoretical analusis were taken into consideration during this
stud - These includid the use of one and two-dimensional imhact
model with an ideal gas equation-of-state, similarity solutions, and
e=perimental-theoreticat correlations. As a result tie crucial link
between the hydrodyna ic phase and the terminal effects was first
observed ln impact caTculations from a hudodynamic code based upon
the PIC formulation of coarresible ftlui2 flow. This result was
1mproved uzon bV the use ol the OIL code. This was the the first
significani result attributed to h~dro-code calculations and was
verified in 1963 by experimental observations C32.

The crucial link was termed 'Late-ztage equivalence.' it, simply
stated, meant that two isact calculations become indistinguishable
when the characteristic dimensions of the projectiles are related

to their velocities through the retation (LO'/L3)-(U'Uo') , then

the two flows wil become equ'vatent in their later stacegs. Fiure I
Is a szle one-dimensiona rve showing the concept o? ate-stage
equivaLence.
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Despite the fact that significant conclusions were obtained by
examining the hydrodynamic phase of the impact interaction, it was
highly desirable to obtain a detailed description of the actual
mechanics for the strength-dependent portion of the interaction. The
most promising approach to the problem consisted of generalizing thehydrodynamic codes so that prob1ems in strength-dependent deformation
could e computed. An additional area which required attention was
that of an impact which was not axi-symmetric. A theoretical under-
standing of the so-called obliquity effects must be based upon
calculations of flows with three space variables and time.

As a result of these recommendations and observations, the BRL
sponsored the scientists who are responsible for the development of two
of the hgrodnasic computer codes used today. These are the HELP E93
and TRIDORF 1i03 codes. The HELP code is a two-dimensional, multi-mat-
erial, Eulerian computer model with an elastic-plastic consituative rela-
tionship. The code was developed by L.J. Hageman under the technical su-
rviion of J.l. Ualsh at the System, Science, and Software (SSS). The

RIDORF code is a three-dimen3onatl, rigid perfectly-plastic material
strength, Euterian code having the computational capability of handling
two materials in a zone. The latter code Was a product of the so-called
evolutionary computer code development tree. The developer was U.E.
Johnson of the Computer Code Consultants.

VI. CHRONOLOGICAL ORDER OF DEVLOPMENT. Table 1 lists the chrono-
lo ical order of development of two and three dimensional, Euterian,
hydrodynamic computer codes. The table presents the date of first
publication of the users manuals, the authors name, and a short dis-
crWipton of the code. The genesis of these codes is the particle-in-
cel code developed by M.V. Evans and F. Harlow in 1957 for all of the
codes listed except the SMITE code E113. The SMITE code is a high-order
accurate differencing scheme which is based upon the Euterian me hod.
It was developed by S.Z. Burstein and H.S. Schecter from Mathematical
Aptlications Group, Incorporated (MAGI). This code was developed under
a 9RL contract in 1972.

These codes have been used by researchers at the BRL from their very
beginning. A good reason for this is the fact that their devetopmeht has
been v;er well documented. The bibliography of this paper will contain
the references for these codes based upon te f irst reported date.

VII. THE EULERIAN HYDRO CODE TREE. The Eulerian hWdro code tree
shows the evolution of the Euterian, hydrodynamic computer codes. The
tree is a direct outgrowth of research sponsored for the most part by the
BRL. 'The development of these numerical schemes has had a great influ-
ence on both government and industry.

Table 2 is a representation of the Eulerian hydro code tree. At its
trunk rests the PlC code, developed at the Los Alamos Scientific Laborat-
ory. Next, the SHELL code which has the same formulation as PIC,
i.e. with discrete mass particles dispersed in fixed, Eulerian cells. It
was developed at the General Atomic Division of General DUnamics by
W.E. Johnson. The next in the chain came a code that had a large
impact on the code development industry, the OIL code. OIL was the
catalyst for the outgrowth of many other codes because it replaced
the discrete particle mass transfort scheme by a continuum. The
predominate reason for its inpac. is that it reduced the amount of
computer internal storage requirements to do even a simple calculation.

-40-



Thereafter, many computers were then able the support the use of the
code.

From this point, the hydro code tree branched in five different
directions. First, a material strength branch, the RPM code (123, was
added to the OIL code. Second, a mu ItLmaterial branch, the TOIL code
[13), was added to the OIL code. Third, a branch of the OIL code was
added with three space dimensions and time as the independent variable.
This code was appropriately called the TRIOIL code (14]. The fourth
branch of the OIL code is a new calculational technique called 'the
splitting technique'. The new code, SOIL E15) was developed by J.E.
Johnson.

A fifth branch is a limb to itself. This limb contains the HULL
codes E163. The HULL code was initially developed at the Air Force
Leapons Laboratory (AFUL) by a modifation of the SHELL code. The HULL
code has been used by personnel at the BRL since its inception.

The multi-purpose code in much use today is th! HELP code (17). It's
a two-dimensional, multimaterial, hydrodynamic code with elastic-plastic
formulation for material strength. The code has evolved from four
major hydrodynamic programs developed over a long period of time. In
Ta le 2. we trace it from its genesis, the P C code, to the OIL code, to
the RPM code, and then to the 8ELP code. The HELP code has undergone
several programming changes over the ears. These changes varied from
minor programming changes to major coae modifications such as the BRLSC
code 3. The most recent was a change in the numerical differencing
proceedure for the calculation of specific internal energies. This
version has been modified by personnel at the BRL and thus receives the
acronym, BRLHELP code (19).

The hydrodynamic codes listed in this paper are a small sample of
those in existance. They are those mostly used by scientists at the BRL.
Nevertheless they have had a tremendous iMpact in our national defense.
Le are on the threshold of a new era in both the use of the h dro-
dynamic codes and the computing machines that run them. Solut1on3
to a wide variety of theoretical research problems are now forthcoming.
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Table 1. The Chronological Order of Development of Two and
Three Dimensional Eulerian, Hydrodynamic Computer
Codes.

Date Name Authors Place Descripition
S

1957E43 PIC M.U.Eyans,F.Harlow Los Alamos Particle-n-celt,2-D,
Hydro.

1959E69 SHELL U.E.Johnson GARD Version of the PIC code

1961E63 SPEAR U.E.Johnon GAD Improved SHELL code

1963C23 OIL U.E.Johnson GAIRD Continuous Mass Trans-port. 2-D,1-Mlat.,Hydro

196533 OIL U.E.Johnson GARD Improved OIL code.

1967C133 TOIL U.E.Johnson GARD OIL with 2-materials.

1967C143 TRIOIL U.E.Johnson GARD 3-D OILol-Mat.,HVdro.

1967E203 RIPPLE M.U.EvansL.Hageman GARD The OIL code used for
&J.A.Ulliamson solving detonation

problems.

1968C123 RPM JohnsonOHageman GAI!D OIL Method with rigid
EvansDienes.Ualsh erfectlj-pLastic a-Laneeri L 3 rngth.

197C93 HELP L.J.Hageean & SSS OIL MthodElastic-
J.M.1alsh. plastic 3trengthMuti-material.2-D,Hgdra.

1971E213 DORF U.E.Johnson SSS OIL code 2-fat.,Riiidperfecttgptasittc, -D.

1971E18] BRLSC M.Gettings SSS HELP modified to solve
the shaped charge
problem.

1973E113 SMITE S.Z.Burstein, MAGI Hiyh order accurate
H.S.Schectee di ferencing scheme,
& E.L.Turkel. 2-D,2-flat., Rdro

1973C223 HELPGRID R.T.Segwick, SS Improved BRLSC code,
L.J.Ua sh,D.WUIkins with grid packaging.

197SC173 HELP L.J.Hageman,et.al. SSS Improved HELP for the
plugging nd shaped
charge problems.

197SC163 HULL M.A.FrVet.al. AFUL Improved SHELL.

1976C103 TRIDORF U.E.Johnson CCC 3-D DORFRi gid er-
fecttV-p a3 ic,-Mat

1977r11S SOIL U.E.Johnson CCC OIL using the split-
ting technique.

1978C193 BRLHELP J.Lacetera, BRL Improved HELP7S (cor-
J.Schmld. L recting the internal
J.Lacetera. energ g problem).

C] The numbers inside of the brackets represent the reference number
of the first publication. (see bibLograph4).
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TABLE 2. A hydrodynamic, Eulerian computer code 'family' tree.

TRIDORF SOIL BRLHELP HULL78I I
DORF9 HELP75 HULL

HELPGRID

DORF BRLSC
I '

HELP

TRIOIL TOIL RPR

OIL RIPPLE SHELL-OILI
SPEARI
SHELL
Plc
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STUDY OF CONVERGENT FLOWS IN CERTAIN SHAPED CHARGE SYSTEMS

By Abdul R. Kiwan
Vulnerability Methodology Team

USA ARR.ADCOM, BALLISTIC RESEARCH LABORATORY

ABSTRACT

Convergent flows arise in a certain class of shaped charge systems
with hemispherical liners which are set in notion by a convergent detona-
tion wave. The study of such flows explains the processes of liner
collapse, jet formation, flight and elongation, the resultant jets and
their properties in such systems. The mathematical and computational
part of this study utilized the HELP code which is a two dimensional
Eulerian, multi-material hydrodynamic code. The study showed that the
jet forms as a result of the liner compression and differs from the
process of jet formation in conical shaped charge systems. Furthermore
the resulting jet did not possess an inverse velocity gradient. Jets
from such systems possess different distributions of mass, momentum, and
energy which make them suitable for certain applications. The study of
such flows explained the cause of some of the experimentally observed
problems with jets from such systems. The theoretical predictions from
this study have been corroborated qualitatively and quantitatively by
experimental measurements.

I. INTRODUCTION

Considerable interest was shown recently in the application of
convergent flows to the design of a new generation of shaped charge
warheads of the future. It was believed that if a metallic hemispherical
liner is set in motion by a convergent detonation wave striking it, then
the resulting shaped charge jet might possess high velocities and other
desirable properties. This consideration has been the primary reason
behind the present study. Intuitively it seems that the collapse of the
liner might be understood by considering the motion of a typical liner
element E relative to am observer at the pole P of the hemisphere as
shown in Figure 1. The observer at the pole P which is moving towards
the center C with velocity V will see the flow from element E coming at
him with velocity V r. In a stationary coordinate system E is collapsing
towards C with velocity V. The liner will continually get thicker
during the collapse until eventually it starts jetting to relieve the
high compression in the liner material. The dotted line shows the
actually computed liner configuration. The numerical simulation of the
collapse and jet formation process was achieved with the HELP code which
we describe briefly below.
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Figure 1: Idealized Schematic Figure 2: A Schematic of the

of Imploded Hemisphere Collapse computational setup

II. DESCRIPTION OF THE COMPUTATIONAL PROCESS

HELP 1 is a two dimensional, Eulerian, multi-material, finite
difference hydrodynamic code. The material model in HELP also includes
strength effects. The equations that are solved numerically in HELP
on the computational grid are the conservation equations of a continuous
medium in motion written in the conservation form

2k = - . (Pui), (1)

a a ap ( (2)7 axuj =  iij -ax axi ( i u)

t (p ET) = p u ui) - .Cpui) - . (puiET). (3)

1 1 1

x., u. denote the i th coordinate of position and velocity component,
t the time, p is the material density, ET is the total energy, S.. is
the deviator stress tensor, and p is the hydrostatic pressure. auations
(1) to (3) together with an equation of state are integrated in three
phases. In the first phase (SPHASE) only the terms due to strength
effects are considered, while the other terms due to the hydrodynamic
pressure forces or transport are temporarily neglected. In the second
phase (HPHASE), only the pressure terms are considered while only the
transport terms are considered in phase 3 (TPHASE). Thus during phase
2 the considered equations are of the form:
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0 (4)
7t

%T(pu.) = - (3

3 (6)

3

HELP employs the Tillotson equation of state to represent inert
material properties. This equation can be represented symbolically
by

p = f(Ei, o), (7)

where EI is the internal energy,
I1

EI - uiu. (8)

Equations (1) to (3) are integrated in a given computational cycle
over the volume V of a typical computational cell. The volume integrals
arising on the right hand side of the above equations are converted to
surface integrals. Executing the three phases of the calculations
described above updates cell mass, moment hand energy from cycle n to
cycle (n+l). The pressure p at the (n+l) cycle is then updated from
equation (7). The stress deviator S.., the pressure p, the velocity
components u. and the energy ET arelaalculated at. the center of each
computationai cell. Boundary surface values of those variables that
are needed to evaluate the surface integrals are obtained by averaging
the adjacent cell centered values of those variables. HELP contains
a transmittive and reflective boundary conditions which are optional at
some of the grid boundaries. Material interfaces are defined in
Lagrangian manner by means of massless tracer particles. Passive tracer
particles provide the option to follow the motion of individual material
particles in a cell Tracer particles are moved with the local flow
velocity. Sliplines can be introduced along material interfaces. HELP
employs the Von Mises yield condition and contains a tensile failure
criterion, and has an explosive burn routine based on the JWL equation
of state. The time step is determined from a courant stability condition.
Additional information about the form of the resulting difference equations,
the various options available, and thT treatment of boundary and interface
cells can be found in the HELP manual .

The calculations below were set up in axisymmetric geometry which
implies that our representative cell is a torus. Our calculations
neglected t e strength effects but contained artificial viscosity.
J. M. Walsh reported in similar calculations that his results were not
substantially affected when the strength effects were incorporated in
the calculations.
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I1. THE COMPUTATIONAL RESULTS AND EXPERIMENTAL COMPARISONS

The problem considered in this study is a shaped charge with a

hemispherical copper liner of an outer diameter 2R = 50.8mm, thickness =
1.9mm, and has a hemispherical charge layer 12.7mm thick of PBX 9404 as

shown in Figure 2. The computation was set in an axisymmetric grid
containing 50 x 90 cells. Each cell was 0.8mm x 0.8mm in the region
containing the liner. The cells were gradually enlarged radially and
axially to the end of the grid. Ten equally spaced angularly latitude
circles, 9 apart, were selected on the outer hemispherical surface of
the charge. The simultaneous initiation of these rings was assumed to
simulate a convergent detonation wave and the experimental situation.

Figure 3 shows the liner configuration at t = 1.92 Us and the
velocity field in the liner and explosive. The liner is seen starting
to collapse after being hit by the almost convergent detonation wave
about 0.46 Us earlier. The lack of confinement on the equatorial plane
of the charge allows the detonation products to expand rapidly from that
surface causing a departure from the idealized collapse depicted in
Figure 1. The equatorial section of the liner starts to elongate at the
explosive-metal-air interface. As the equatorial rarefaction wave
travels toward the pole the pressures are relieved. Figure 4 shows the
pressure in the flow field at t = 1.92 us which is seen to be large in
the collapsing liner and has a maximum value of 0.328 Mbar. About this

I Time = 1.9211s

. \ -" 1/Time .1.92 Us

.-

0 4 4£
Figure 3: Early stage of liner Figure 4: Pressure field at an early

collapse stage
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time the effect of the rarefaction from the nearest unconfined spherical
surface of the charge starts to affect the liner surface and the pressure
begins to decrease. Figure 5 shows the flow velocity field at t = 5.8 Ps.
The liner is observed to be getting thicker at the pole and elongating
further in the equatorial region. The pressure field at this time is seen
in Figure 6 to have decreased significantly by that time. The maximum
pressure in the liner material is found to be 0.15 Mar. As the liner
collapse advances, the pressure in the liner starts to increase again

Time 5.81 us

0.1 10

. i Time =5.81 us

~l 0.3.00

- \\

UADZW (04)

Figure 5: Flow field prior to Figure 6: Reduced pressure field due
jet formation to nonconfinement

due to liner compression and reaches a maximum value of 0.603 Mbar,
at t = 9.2 ps as can be seen in Figure 7. The pressure decreases
thereafter due to the influence of the equatorial rarefaction wave and
the expansion of liner material arising from jet formation and elongation.
The equatorial rarefaction wave reaches the polar region about t = 7.2 ,s
and the jet becomes discernable after that time. Figures 8, 9, and 10
show the process of jet formation and the beginning of its flight. The
short arrows show the direction of flow velocity in the different layers
of liner material. It is clear from those figures that the jet forms
from the innermost liner layer. Figure 11 shows the equatorial section
of the liner in the process of impacting the jet. A radiograph of the
jet from such a system, at late time, showed part of the jet to be missing.
The cause of the missing part was not known then but our calculations
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Figure 7: Pressure filed shortly after jet Figure 8: Early jet
formation formation
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Figure 9: Early jet Figure 10: Jet elongation
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later shown in Figure 11 explained it. Figure 12-shows an experimental
radiograph taken subsequently, of the jet being struck by the equator at
about t = 17 us. Figure 13 shows a plot of velocity versus time for ten
passive tracer particles placed on the inside surface of the hemispherical
liner. As remarked earlier all these particles attain jet velocities.
Similar plots of velocities of passive tracers placed across liner
thickness reveal that only those placed on the innermost liner surface
attain jet velocities (i.e. v> 2mmips ). Figure 14 shows a plot of the
average velocity components of:-the metallic liner as functions of time,
while Figure 15 shows the different liner energies as functions of time.
The initial rarefaction wave arriving at the liner surface due to the
nonconfinement of the spherical charge surface reduces the liner accel-
eration, while the equatorial rarefaction wave causes the jet to become
distinguishable. The continued liner compression converts the liner
radial momentum to axial momentum. The total liner energy increases
rapidly at first and approaches an asymptotic value later on. Figure 16
shows a plot of jet velocity as a function of cumulative mass at various
times. The jet mass continually increases as more metal is accelerated
to jet velocities
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it was found computationally that about 18.7% of the hemispherical
liner forms the jet (i.e., has velocity > 2mml,.±s). Experimental
measurements estimate the jet mass to be about 18% of the liner mass.
Our calculations indicate that about 19.9% of the explosive energy is
delivered to the copper liner of which 11.8% is in kinetic energy form.
The kinetic energy of the jet is 41% of the total energy of the liner.

* S AMACIO CIA TO NOMCOHINIMENT

1.0 F QATRA
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This is in agreement with experimental observations. The jet tip
velocity was found to he 6.42 mmin4s. Two experimental measurements of
jet tip velocity for such a charge were made at BRL of 7.07 mminos and
7.57 mmps. in the experimental tests the hemispherical charge used
was 0.151 kg of PBX9404 and the initiation package contained 0.2685 kg
of composition B-3. In the computations only the energy from the hemi-
spherical charge was incorporated in the calculations. If one adds the
kinetic energy of the flier plate in the initiation package to the
explosive energy of the charge and accounts also for the effect of
confinempnt provided by the flier plate then the resultant jet tip
velocity will be found to be 7.35 mrnIps which is within the range of
experimental measurements. Parametric studies which included variations
of liner and charge thicknesses, confinement and geometry were conducted
and their effects on the resultant jet- studied. The details of those
studies can be found in reference 5.

IV. CONCLUSIONS

It is clear from the above study that the processes of collapse
and jet formation for a hemispherical liner which is set in notion by an
almost cogv~rgent detonation wave are fundamentally different from those
of a cone ' . The various hemispherical liner elements converge in this
case towards a single point as they collapse. The jet forms due to the
compression of the liner material which squeezes out the jet as in an
extrusion process. The jet forms from the innermost layer of liner
materiaA. No inverse velocity gradient was observed in jets from such
systems and consequently the leading jet particle has a small mass. The
total amounts of jet mass and kinetic energy from such a system are
similar to those obtained from conical systems (same order of magnitude),
although their distributions along the jet length appear to be different.
Jets from the present hemispherical systems have greater length.
Experimental observations indicate that jets from such sygtems have
longer breakup time. According to jet penetration theory the depth of
penetration P by a jet of length Ij is given by

S1/2

P X~j(9)

where p. is the jet density, p is the target density, and X is a
parametdr which is equal to one for continuous jet and equals two for
dispersed particle jet. Equation (9) indicates that deeper penetrations
would be obtained frou' the longer jets obtained from the present hemi-
spherical systems. This has been observed experimentally to be the
case, although the penetration holes have smaller cross sectional area
since these jets have smaller cross sections as a consequence of the
conservation of mass.
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THEORETICAL AND EXPIERIMENTAL STUDIES OF
HEMISPHERICAL SHAPEI:-CHARGE LINERS

Janet E. Lacetera and William P. Walter's
BIallistic Research Laboratory

US Army Armament Research and Development Command
Aberdeen Proving G.round, Maryland 21001

The collapse, jet formation and performance of shaped-charge
liners are influenced by many factors. These factors relate basically
to the aeometry and characteristics of the high energy explosive used
to collapse the liner as well as to the liner aeometry and liner
material properties.

Hemispherical liners are especially sensitive to the variation in
wall thickness from pole to equator, i.e., wall taper. In fact, the
wall taper can dramatically alter the collapse and jet formation pro-
cess and the performance characteristics of hemispherical liners. In
this paper-, the collapse and jet formation behavior of Electrolytic
Tough Pitch (ETP) copper hemispherical liners with severe Y l )taper
ratios of up to two to one will be examined using the HELP ' code.

A uniform-wall-thickness liner was used as the reference case to
assess the effects of severe wall taper ratios. This reference liner
had a constant wall thickness of 3.79 mm and an outside diameter of 127
mm. The liner was driven by 75/25 Octol high explosive with 127-mm head
height (distance from base of charge to pole of the liner) and sub-
calibration (overlap of explosive on each side of liner) of 3 mm. The
explosive was point detonated on the axis of symmetry at the base of
the charge. In the experimental test assembly, an aluminum casing 190
mm long and 3.2 mm thick surrounded the charge. This casing was
omitted from the analytical calculations since the thin aluminum body
has a minimal effect on the liner collapse and formation process.
Figure I illustrates the analytical liner configuration as well as
tapered wall configurations of the thick and thin pole designs investi-
gated in this study.

The thick pole designs utilized the same equatorial thickness as
the uniform wall hemisphere and achieved the thickened pole effect by
offsetting the center of the inner wall of the liner to increase the
size of the pole region. Similarly, the thin pole effect was achieved
by increasing the equatorial thickness over that of the uniform wall
hemisphere and holding the pole region constant by offsetting the
center of the semicircle forming the inner liner. No attempt was made
in this study to optimize the liner mass. Both thick and thin pole
design were more massive than the uniform liner.
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It is also feasible to form tapered liners with less mass than the
uniform wall liner by causing the maximum thickness of the tapered
liner to be the thickness of the uniform wall liner and removing
material t?3Ibtain the prescribed tapers. This approach was taken in a
1978 study performed at the BRL/ARRADCOM on hemispherical wall varia-
tions using two to one taper ratios. In this case the thick pole con-
figuration produced a jet with a higher tip velocity than the jet pro-
duced by the uniform wall liner. The thin pole liner did not, however,
form a coherent jet due to the extreme two to one taper ratio at the
pole. This behavior was quite different from that observed by increas-
ing the liner mass as we presently show.

Other open literature studies regarding tapered hemispherical
liners were reported by the Los Alamos Scientific Laboratory (LASL).
The LASL design called the TL .$Tapered Liner Charge) investigates
tapers of less severe ratios.

In the present study, the reference copper hemisphere was varied
from pole to equator using taper ratios of 1.5 to 1, 2.0 to I (thick
poles) and I to 1.5 and I to 2.0 (thin poles) as shown in Figure 2.
This study was designed as a reference or base case from which further
design improvements could be made. Besides wall tapering, other improve-
ments are possible depending on the appliY1t n of the warhead, such as
heavy steel cn inement of the explosive, ' (4a54iner taper resulting
in less mass, an alternate line .iaterial,(4 ' an optimized mass
distribution of the liner material and an optiT41ation of the explo-
sive, explosive geometry, and mode of initiation.

The short-time collapse and jet formation properties were examined
with the two-dimensional finite difference Eulerian computer code HELP.
HELP is capable of describing unsteady multimaterial interactions and
treating compressible fluids or solids in the hydrodynamic or elastic-
plastic regime. The compressible, two-dimensional mass, momentum, and
energy conservation equations are solved together with an equation of
state (in this case Tillotson) that governs the thermodynamic behavior
of the liner and body material. For the calculations presented here
the code Tkj use of an explosive burn routine based on JWL equation
of state.

Figure 3 illustrates the collapse and jet formation sequence at
early times for the uniform wall liner as calculated with HELP. Notice-
able deformation has occurred by 10 Vs after denotation with the pene-
trator developing a jet tip velocity of 4.0 mm/Ps (Table 1) and becom-
ing increasingly well defined as time passes. This collapse and
formation sequence as well as the predicted jet tip velocities show
excellent agreement with experimentally obtained data.
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TABLE I

Liner Jet Tip Velocity

lniform Wal 1 4.0

Thin Pole
(I to I.5) 3.
(I to 2.0) 3.

Thick Pole
(1.5 to 1) 3.6
(2.0 to 1) 3.3

After successfully modeling the collapse and jet formation behav-
ior for a uniform wall nemisphere, the tapered designs were analyzed.
In the case of the thick pole liners, the intent of these desicns was
to create a slower but more massive jet. Such a jet should have a
longer breakup time, that is, remain continuous longer than uniform
wall liners, and should be less susceptible to radial breakup while
spinning when gun launched. Figures 4 and i present the collapse and
jet formation process for thick pole tapers of 1.5 to I and 2.0 to 1,
respectively. In these cases, the equatorial thickness was conserved
at 1.79 mm and the pole thickness set at I.5 or 2.0 times the equa-
torial thickness. Both the 1.5 and 2.0 tapers produce substantially
more massive Jet than in the uniform case, and show a jet tip velocity
decrease of 10;' and 17.5", respectively. For the early time computer
results it was apparent that the thick pole penetrators would form mas-
sive coherent jets and this was verified experimentally.

The thin pole configuration involved the same severe taper ratios,
but in these cases the equator was 1.5 or 2.0 times the nominal pole
thickness (3.79 mm). Figures 6 and 7 show the collapse and jet forma-
tion pattern to be expected. These early time sequences were viewed
with some concern because of the appearance of an indentation at the
base of the jet which could presage a later instability on the pene-
trator. However, late time experimental radiographs show the formation
of a coherent penetrator un Me the low mass, thin pole configuration
reported by Aseltine et al. ' The improved behavior is undoubtedly
due to the thicker wall design. The effect of the thick equator is to
slow down the rear of the jet and increase the velocity gradient. The
thin pole penetrators are predicted to yield higher tip velocities (3.8
for I to 1.5 and 3.6 for 1 to 2.0) than the thick pole designs, but
they reach lower velocities than the less massive uniform wall hemi-
sphere. We note also that the thin-pole, thick-equator designs will
have a lower jet tail or rear velocity due to the more massive equa-
torial portion of the liner. This thick equator effect will slow down
the collapse of the base of the liner and, for the appropriate explo-
sive gfg7 etry, may prevent the jet pinch-off effect observed by
Kiwan.
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In general, we see that liner taper, both in degree and direction,
alters the collapse and jet formation process of the hemispherical
liner. Exemplifying this, Figure 8 compares the uniform wall, 2 to I
taper thick pole and the I to 2 taper thin pole designs at 10 and
19 Ps. The formation of the penetrator is clearly different for these
three cases.

We can conclude from this study and evidence presented in the
works cited, that the HELP code can be an effective design tool in
creating unique warhead configurations. Unconventional liner wall
thickness tapers, various liner geometries, various liner materials,
heavy confinement effects, head height effects, explosive geometry
variations, types of explosives and modes of explosive initiation can
all be simulated with HELP. Here we found that the collapse P-4 jet
formation process, as well. as the jet tip velocity for hemisph ical
liners was accurately predicted by HELP. Such information is extremely
useful when fabricating new designs and an a priori knowledge of the
jet tip velocity is necessary to set the appropriate delay times for
the experimental flash radiographs.

Reviewing the results obtained by the severe wall tapers, we note
that the thick pole designs result in a slower, more massive jet than
the uniform hemisphere. The thin pole designs created by adding mass
form a coherent jet with a large breakup time. Further studies involv-
ing the properties of tapered hemispherical liners are underway based
on the encouraging results of these preliminary investigations.
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LINER GEOMETRY

THC POL LINER

THIN POLE LINER

UNIFORM WALL LINER

Figure 1
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SEVERE TAPER DESIGNS

2:1 POLE TO EQUATOR 1: 2 POLE TO EQUATOR

1.5 :1 POLE TO EQUATOR 1:1.5 POLE TO EQUATOR

Figure 2
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COLLAPSE & JET FORf.iATION PROCESS
FOR UNIFORM HEMISPHERICAL LINER

t 2 ps t v6ps t 8 ps

t lops t 12 ps t 14 ps

t --16 ps t --18 IJS

Fgure 3
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COLLAPSE & JET FORMATION PROCESS
FOR A THICK POLE HEMISPHERICAL LINER.

(1.5 TO 1)

t- 5ps t lops t:12ps

t, 14 sis t - 16 ps t - la ps

Figure 4

-64-



COLLAPSE & JET FORMATION PROCESS
FOR THICK POLE HEMISPHERICAL LINER (2:1)

t --5 Ls t -lO/JuS f :12 Ls

t "-14 Ls t-16 Ls t --I7tu~s

Figure 5
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COLLAPSE & JET FOR.MATION PROCESS
OF A THIN POLE HEMISPHERICAL LINER

(I TO 1.5)

t 5 ps t :12 ps t -14 ps

t 16 ps t 18 ps t• 19ps

Figure 6
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COLLAPSE & JET FORMATION PROCESS
FOR THIN POLE HEMISPHERICAL LINER (1:2)

t :lOps 12 -st --5 s

t:14,us t"- 15,Ls

Flg-ire 7
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COMPARISON OF UNIFORM,
THIN & THICK POLE AT 10 & 14 ps (2:1) (1:2)

UNIFORM THIN

THICK

t - 4 s

UNI FORM THIN THICK

Filure 8

1 JUN 79
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OPTIMAL MIXED STRATEGIES IN DYNAMIC GAMES

P. R. KUMAR
Department of Mathematics

University of Maryland Baltimore County
Baltimore, Maryland 21228

ABSTRACT. We treat a class of two person, zero sum, dynamic games of

the type xK+l = f(xK,uKwK) . The two players each wish to steer the system

to a different subset of the state-space. The optimal solutions for this

class of games have to be sought in the class of mixed strategies. A theory

of optimality is developed.

The specific class of games considered is one of the most classic of

the problems in game theory. A gun is firing at a moving object. How best

should the object move in order to reach a certain destination? Conversely,

where should the gun fire in order to prevent the object from reaching its

destination? This problem occurs in different guises in a variety of situa-

tions. The moving object could, for example, be a ship or a tank. The

optimal strategies of the two players have, of necessity, to be mixed.

* A more detailed treatment of this presentation can be found in Reference [1] .

The research reported in this paper was supported in part by Scientific
Services Agreement with Battelle Columbus Laboratories under Contract
No. DAAG-29-76-DlOO and in part by the U. S. Army Research Office under

Grant No. DAAG-29-79-C-0064.
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I. INTRODUCTION. Consider the two-person, zero-sum, dynamic game:

[ K~ [ I xK - v(t - [ x -U K]

[YK + 0 + WK

x 0 2 0 specified.

uK E (- vs(xK), + vb s(xK)3

WK E -.-

J(JuK IwKl) = 1 if for some n, xn < 0 and

(Xi + u) E 1yi+l - r, Yi+l + r) for

i = 0,1,2,...,n - 1

f 0 otherwise

Players I and II both observe [ ] , the state of the system, and basedIYK

on these observations choose u K and wK respectively to maximize and

respeccively minimize the cost criterion.

This system models the following dynamic game.

Gun Tank

x
0

Figure 1

A gun located as shown wishes to prevent a tank located initially at x

from entering (--,0) . The game proceeds as follows. The gun aims at yl-w

and fires a projectile at the tank. The projectile takes a time period s(xo) to

reach the vicinity of the tank. During this interval, the tank whose forward and
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backward velocities are bounded by v and vb respectively, moves a distance

u0 E '- vs(x 0 ), + Vb s(x0 ) ] . If the new position of tank x0 + u0 belongs

to a certain neighborhood of the point at which the projectile lands - more

precisely if (x0 + u0) E [yi+ I - r, yi+ + r) - the tank is destoyed,

and the game ends. If not, then assuming that the gun fires every t seconds,

there is a certain time period t- s(x0 ) during which the gun does not fire.

In this time period, the tank moves at full speed and takes up a position

x I = x0 + u0  (t-s(x0))v at the next instant of firing of the gun. If

x E (--,0), then the tank has accomplished its objective and the game ends.

If not, the above sequence of events repeats itself. If the tank safely reaches

(- w,0), then it wins and the payoff J = 1, otherwise J = 0

II. MIXED STRATEGIES.

For any deterministic IuK1 chosen by the tank (with each uK

chosen as a function of past history), the gun can choose IVKl, to ensure

J = 0. Similarly, for any deterministic policy IvK1 chosen by the gun, the tank

can choose IuK' to guarantee J = 1. Hence min max J = 1 > 0 = max min J
IVIvK 1 K IL KI v K I

Therefore a saddle-point does not exist in the class of pure strategies. Turn-

ing therefore to mixed strategies, we define a mixed strategy for the tank as

a collection IF x 01 where each Fx  is a probability distribution on

[x -vs(x), x + vb s(x)] . Fx  is the probability distribution of x + u,

given that the current position of the tank is x. Similarly, we define a

mixed strategy for the gun as a collection IGx  x 0 1 where each Gx  is a

prob. dist. on (- *, ) . The gun is assumed to choose v, the position at

which it aims its fire according to Gx, when the tank is located at x at a

firing instant.

-71-

IN4!



Implicit in these definitions is a restriction of the mixed strategies

to be both Markovian and stationary. However, the optimal mixed strategies

belong to this class, and therefore we avoid notational complexities. The

reader is referred to [l for greater detail.

III. OPTIMAL SOLUTIONS. t a s(x)

We consider the restrictive case where the flight time of the pro-

jectile is a constant precisely equal to the interfiring time of the gun.

For more general situations the reader is referred to [1] . We also assume

vt = 2nr for some integer n.

The following definitions are necessary. Let F = IF x 01 and

G = Gx : x 0: represent mixed strategies for the tank and gun respectively.

Let I - K(x0 ; F,G) := E[JIF,GJ represent the probability that the tank

achieves its goal, given that its initial position is x0 and the mixed stra-

tegy pair (F,G) is adopted. If inf I - K(x0 ; F , G) = sup 1 - K(x0 ;F,GO) =

G F

I - K0 xO) then (F ,G ) will be a saddle-point in mixed-strategies and

1 - K0 (x) will be the value of the game, for the initial position x0  Let

l(a) denote the largest integer less than or equal to a and H( xJ) repre-

sents the prob. measure under H of the singleton set fx.

Proposition 2

The game has a mixed strategy pair (F 0 , G ) which is a saddle-point

for every x0 . The value of the game is given by

1 - K (X) = l+f(2Jr) for 2Jr !x 0

< 2(J+l )r

where f is given by the linear recurrence,
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f(2jr) = for j = -1, -2, -3,....

j-1

nl1 1 i + ZI f(2ir) for j =0,1,2....
I i =j-n

Also -1

F ( -Ix 2jrj I - K O(x2jr) ] Z-r
x - KO(x - 2ir)

for j = 1,2,...,n

G 2( 2r- rD1~ - 1- K (x)
x 2r I- K 0 (21(- )r - 2jr - r)

for j = 0,1,...,n- I

Proof See [1l .

IV. SOME INTERPRETATIONS.

We provide below some interpretations of the above result.

Firstly, the tank does not utilize its backward motion capability.

Such a capability is therefore unnecessary in the situation t m s(x) . How-

ever for t > s(x), see [1], such a capability is useful.

Secondly, the optimal prob. dist F0  is almost a discrete unitorm
x

prob. dist. on Ix-vs(x), x] . Since a discrete uniform distribution is the

distribution which renders the tank hardest to "hit", such a distribution is

precisely whaiE"t nkI -6 Vfttu - -a survival, and if it

did not have a destination. Therefore, the optimal mixed strategy F0  is

close to a pure survival strategy.

However, a similar situation does not hold for the gun.
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V. CONCLUSIONS. We have considered a dynamic game of the type

XK+l = f(x ,uKw ) where each player attempts to steer the system to a sub-

set of the state-space. The particular system considered is a model of the

encounter between a tank and a gun. Purc strategies are of no use in such a

game, and a value does not exist in such a class. However, a value and saddle-

point do exist in the class of mixed strategies. Such optimal mixed strate-

gies have been presented.

VI. REFERENCES.

1) P. R. Kumar, "Optimal Mixed Strategies in Dynamic Games," Mathematics

Research Report No. 79-3, UMBC, May 1979.
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THE USE OF SIMILITUDE METHODS TO REDUCE THE
SIZE AND COST OF GAME COMPUTATIONS

Morton A. Hirschberg, USA BRL/ARRADCOM
and

Benjamin E. Cummings, USAMSAA
Aberdeen Proving Ground, MD 21005

ABSTRACT. The Buckingham Pi Theorem was applied to Lanchester Linear Models
and conventional war games (e.g. DIVLEV) to reduce their size and/or computer costs.
The Lanchester models could not be reduced; however, the approach is a serious
alternative for Lanchester modeling. Conventional games are candidates for size
and cost reduction when the number of computations performed is large in relation
to accounting or bookkeeping in the code. In addition, the use of similitude can
play an important role in the formulation of new models and games.

I. INTRODUCTION. The scientific computer codes in use in the Army span the
complete range from simple models of physical phenomena through large, complex
simulations and games depicting division and Army level combat scenarios. The 2i:e
and cost of game computations have been of concern to the authors and others for
some time. Sophisticated mathematical techniques such as matrix decomposition or
manifold reduction are just beginning to find their way into the analysis and struc-
ture of new models and games but are rare even in recent (i.e. 3-5 year old) codes.

This paper is an examination of existing models and games and the possible
reduction of their size and/or running costs. In addition, we wish to present a
methodology for minimizing size and cost of future models and games. The basis of
the analysis is the Buckingham Pi Theorem or Pi Theorem, the major tool of dimen-
sional or similitude analysis.

A practical working definition of similitude is the investigation of complex
phenomena using experiments or models of similar phenomena which are easier to
describe and analyze Using similitude one forms a likeness to the complex pheno-
mena incorporating as many features of that phenomena which adequately represent it
in the areas of interest. Representation of some aspects of the phenomena may be
distorted or completely lacking. It is not our intention in this paper to deal
with the complete theory of similitude, its strengths and weaknesses, or to teach
one exactly how to use similitude (especially what constitutes an adequate repre-
sentation of a complex phenomena). These topics are outside the scope of the paper;
however, we suggest the following references for further information on similitude:

L. I. Sedov, Similarity and Dimensional Methods in Mechanics, Academic
Press, New York, 1959.

H. L. Langhaar, Dimensional Analysis and Theory of Models, Wiley, New
York, 19S1.

W. E. Baker, P. S. Westine, and F. T. Dodge, Similarity Methods in Engi-
neering Dynamics, Hayden, New Jersey, 1973.

The Journal of the Franklin Institute, Special Issue, Modern Dimensional
Analysis, 292, 6, December, 1971.
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1[. Buckingham 'i Theorem. The principal tool of similitude and dimensional
analysis is the Buckingham Pi Theorem. Its simplest statement, shown below, while
not strictly correct, serves well for most instances.

Buckingham Pi Theorem

Given n variables involving N reference units, these may be
combined to form n-N dimensionless parameters each having
N+1 variables.

The theorem tells us that if we have a set of n dimensional formulas expressed
in terms of N reference units we may reduce this set of formulas to an equivalent
set of n-N formulas (called pi terms) each of which contains N+1 of the original
n variables. A complete algebraic treatment of the Pi Theorem appears in Langhaar.

As an example from physics, consider the following five dimensional equations
expressed in terms of three reference units.

F F

j= FL 2 T

A= L
2

p = FL4 T
2

v = LTI

where F = force, V = viscosity, A = area, p = density, v = velocity, L = length,

and T = time. These may be combined to form two dimensionless pi terms:

7 F and r= V1 =  2 2 A 2
Apv vA p

(note 72 is the Reynold's number).

An important aspect of the Pi Theorem is the nature of the functional rela-
tionship of the quantities characterizing the phenomena under investigation. The
numerical values of dimensional quantities depend upon a choice of units which has
no connection with the substance of the phenomenon. That is, the functional rela-
tions are independent of a choice of units. This fact is most germain to our appli-
cation of the Buckingham Pi Theorem to phenomena which are not necessarily physical.
It allows us to introduce nonphysical reference units. In addition, it allows us
to introduce artificial reference units into physical or nonphysical phenomenon as
long as the functional relationships of the phenomena are not altered. With this
knowledge, we may now extend the use of the Buckingham Pi Theorem to arbitrary
phenomena such as economics, or in our case military models and games.

I1. The Lanchester Model. The authors chose two courses; first, an examina-
tion of the Lanchester linear model, second, an examination of DIVLEV, a tradition
large scale war game model. Both will be discussed in detail below.
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The Lanchester linear model is given by:

dM
dt = -aliM - a 2N + rl(t)

dNd- = a 2 1N - a 2 2
N + r2 (t)

These two equations comprise a mathematical model describing the interaction of

two military forces -- Red and Blue -- which inflict an attrition upon each other

while each is also undergoing replacement. We shall identify Red forces by 1\1 and
Blue forces by N.

The first equation, which describes the rate of change, (d/dt), of a military
force indicates that the Red force is modified by: (1) a loss component, repre-

sented by (-a 1lI), which is proportional to the magnitude of the Red force, M,

(2) a loss component, represented bv (-a l2), which is proportional to the magni-

tude of the opposing Blue force, N, and (3) a replacement rate, r (t), describing

the forces added to the Red side. The second cquation has a similar interpretation
for Blue forces.

As a mathematical model, we note that these equations are characterized by four

basic aspects:

(a) Economy of Expression
(b) Availability of Solutions

(c) Determination of Values of Parameter
(d) Applications and Predictions.

To simplify the analysis, the authors selected for study the combat situation
I

involved in the capture of Iwo Jima by US forces . The following equations result:

Japanese Forces without replacement

dM= -BM

US Forces with replacement

dN= -AN - DM + R(t)t

IT. E. Oberbeck, Military Operations Research Lecturel, Lanchester's Equations,

IDA, 1964.

-77-

- a



7AD-AOSO.8 736 ARMY ESEARCH OPFIC RSEARCH TRIAN8E PARK C Fgf 2/4
JAM soTRNATOSO THE CONFERNC OF ARMY 0A4EATICIANS (25TH).dU)

UNCLASSIFICO AR-4-1 NL

,90 flf MfllEfEfllf

momhhhhhhhhhhl
mmmmhhhhhhmh
MENEMhhhMEhu
m~Il--EiEIliEEEEEEEEEoh



Formulating a difference equation solution for the dimensional version of this
model we obtain:

N+ = -RNkAt + Mk,1 k k

Nk+ 1  (1-AAt)Nk - DMkAt + Rk(t)At

There are six parameters in this model; M, N, R, A, B, and D.

The difference equation solution for the nondimensionai version of this model
is:

Mk+ 1 = l 7BNkAT + Mk

Nk+ 1 = (1 - IAAT)Nk - 7DMkAT + 7R(T)AT

Here we have four dimensionless parameters 7rA' B VIT D and rR; however, we have the

following expressions for the yr's.

N
B = j a M

aM
0

TD = JjN

R (r)
T 6 N0

where: M0 is the initial Japanese force.
N is the initial US force.
0

a is the attrition of the US due to Japanese.
B is the attrition of the Japanese due to US.
y is the loss factor based on the size of the US forces.
R(T) is the replacement of the US forces.
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and the dimensions of:

Us
= Japanese T

= Japanese
US T

1
Y=T

R -

where: T is time.

In comparing the dimensional and nondimensional versions of the Iwo Jima linear
Lanchester models we see that the nondimensional version has two less parameters.
The computational size of both versions are comparible and both are small. The com-
putational speeds of both are comparible. Furthermore, unless the replacement rate
is constant, the bulk of the computational time in both versions may be governed by
calculating R(t) or nR(T).

The conclusion is that in general either version of the Lanchester linear mod-
el should run extremely fast. Cost reductions using the Lanchester model will de-
pend upon the skill of the analyst in formulating as .few computer runs as possible.
The use of similitude does however present an alternative method of viewing the
Lanchester equations.

In passing it should also be noted that when closed form solutions of the Lan-
chester equations exist they are already in nondimensional form.

IV. DIVLEV DIVLEV 2 is a combined arms war game model that takes player
determined organizations and tactical decisions for both forces in the game and
determines the movement and attrition that occur based on this information. Its
primary purpose is the evaluation of material systems. DIVLEV consists of a main
program, 66 subroutines and 10 functions.

The game may be played in an open or closed fashion. It is usually run with a
5 minute clock cycle with status reports generated at every 15 minutes game time
and plots of force deployment generated at every 30 minutes of game time. The game
is usually stopped after each 30 minutes of game time for analysis. A typical game
may require anywhere from one to several months for analysis and involve many hours
of computer time (see Figure 1).

Data for DIVLEV exists as in-line code (DATA statements) of a fixed nature and
input parameters in the form of cards (as many as 38 different card types involving
hundreds of parameters may be needed for one DIVLEV game).

2DIVLEV War Game Model Computer Program, USAMSAA, January 1977.
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DIVLEV

PRELIMINARY PHASE

OBJECTIVES OF STUDY:
TACTICS TO BE USED

I RESOLUTION OF PLAYER-CONTROLLED
UNITS IN GAME

I
ORGANIZE FOR COMBAT -- 1 MAN-MONTH

EQUIPMENT INPUT -- I MAN-MONTH
POSITIONING OF UNITS -- 2 MAN-MONTHS

COMPILATION OF EFFECTIVENESS DATA -- 3 MAN-MONTHS

CHECK OF VALIDITY OF
DATA BY "CONTROL" TEAM

PREPARE TO RUN PROGRAM

Figure 1. Sequence of Events in Preliminary Phase.
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Using parameters from the data statements, 19 dimensional formulas were devel-
oped in terms of ten reference units. These are shown in Figure 2. The meanings
of the variables and reference units are given in Table I.

The equations listed in Figure 2 are read, e.g., as follows:

IDEPLOYT = TIME
NPBP = NUMBER x WEAPON x KILLPERS

Noting the large number of variables and reference units one sees it is not
practical to solve large dimensional problems by hand. A computer program developed

by Sloan and ltapp 3 to generate integer solutions was embedded into a procedure for
4solving, permuting, and identifying nondimensional parameters . The importance of

permuting dimensional equations is in the fact that an application of the Buckingham
Pi Theorem produces one set of 7 terms for a given ordering of the dimensional equa-
tions. A particular ordering of the equations may yield trivally simple nondimen-
sional solutions (e.g., TIME/TIME), while more fruitful solutions go unnoticed. By
permuting the dimensional equations one increases the chances of finding interesting
nondimensional solutions (of course many more trivial solutions are generated, too).
The procedure developed in Reference 4 also attempts to identify solutions by com-
paring generated solutions with well-known nondimensional numbers (e.g., the Rey-

nolds number (DENSITY x VELOCITY x LENGTH/VISCOSITY) or pvA /v (see sample problem
on page 2). The importance of identifying well-known nondimensional numbers is ob-
vious when considering physical problems; in problems where artificial reference
units are introduced the importance is that one may discover meaningful analogs to
physical problems which explain the phenomena under investigation.

Returning to DIVLEV, and applying the Buckingham Pi Theorem one sees that there
are nine Pi terms each involving 11 variables for each ordering of the dimensional
equations. One such Pi term generated is:

STDLP
MTAH x BARTER

The explanation for this Pi term is that it relates the length of time a helicopter
is with a unit, to the coverage the helicopter can give to that unit (a very impor-
tant piece of information).

While this is all very interesting, did it help reduce the size or cost of
DIVLEV? The answer is that, when the authors examined the DIVLEV code in detail,
they found there were few modeling computations performed in relation to the account-
ing or bookkeeping in the code. That is, there were few models in comparison to the

3A. D. Sloan and W. W. Happ, Computer Program for Dimensional Analysis, NASA TN
D-5165, April 1969.

4M. A. Hirschberg, The Evaluation, Manipulation, and Identification of Nondim-
sional Numbers, ARBRL-TR-02076, June 1978.
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Table I. Meaning of Variables and Reference Units Used in Dimensional Formulas

Variables

IDEPLOYT - Time for unit to deploy.

BARTER - Barrier.

POST - Posture description of unit.

FUELI - Fuel capacity.

FUEL2 - Fuel usage rate.

NAMPRE - Number of artillery battalions.

NAMBRT - Number of artillery battalions.

STDLP - Distance between concentration points.

NPBP - Number of unarmored weapons that kill personnel.

NPBA - Number of armored weapons that kill personnel.

NABP - Number of unarmored weapons that kill armor.

NABA - Number of armored weapon- that kill armor.

AEL - Area effects for artillery and missiles.

PCCAS1 - Fraction of acceptable loss rate for personnel.

PCCAS2 - Fraction of acceptable loss rate for armor.

MTAH - Length of time helicopter is with unit.

ITATAH - Length of time helicopter is in laager area.

RPM - Rounds per minute

RPK - Rounds per armor kill

Reference Units

TIME - Time

DISTANCE - Distance

TONNAGE - Tonnage

NUMBER - Number

WEAPON - Weapon

ARMORED - Armored

KILLPERS - Kill of personnel.

KILLARMO - Kill of armor.

ARTILLERY - Artillery

ROUNDS - Rounds
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number of tests to determine which model to use. The bulk of the cole and co~mputer
time is iiscd in testing and not mudel computation. Thi s findin was sonewh:it shock-
in bit oonfirmed h, examining another convention'. I in- model.

V. )-!V(!ISSON. Fhe typical scal ing problem :f mi litude analysis is one of
I 'i, mon,' through testing at reduced size or reduced number of parameters. That

i. ::ot f.Ilv thc situation which can be exploited in the similitude analysis of
exist ln-7 '4ames. \ most valuable associated result of similitude analyses is reduced
cost through improved understanding. One may hope for this result, provided an an-
alyst has the initiative to apply these methods.

The typical scaling that we have referred to starts with a tabulation of rele-
vant parameters; proceeds to th:3 reduction of a set of pi-parameters; obtains the
constraints that must be applied for realistic testing; and, finally verifies that
the response functions exhibit null variation under changes of scale. The nature
of games is to exploit the human variation of the players and so to develop the
knowledge of how to win. Thus, only some of the parameters which may be developed
can be held constant from run to run. The response function will thus be a function
of scaled pi-parameters and uncontrolled or quasi-controlled pi-parameters, or what
we might call upsilon-parameters (T r). The reality of the game is that the scaling

constraints are in fact relaxed by the nature of the model (man-in-the-loop) a d so
the analyst must recognize the loss of these constraints in his methods.

The conventional similitude analysis recognizes that the response functions take
the form:

F1 (RI' r1 ..... 7N = 0

FX(R , T I .... 'T N =0

and the associated response functions are:

R =R (7i)

Ri =RZ(Wi).

The ordinary scaling of the response functions is achieved if scaling of vari-
ables leads to fixed pi-parameters and a resultant null variation in the response
functions. Because of the presence of player in the game, it may not be possible
to achieve this class of scaling in a similitude analysis of a war game. In that
situation an inherently less restrictive analysis is appropriate. Instead of the
restriction:

w. = constant for 0 < i < N;
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we introduce:

T, = constant for 0 < i < n

Ti = i for 0 < i < n

and

T. $ constant for n < i < N.1 _

Then the variation of the response functions will change from

SR. = 0J

under scaling to

6R. = c. / 0
3 3

and

C 3 s (Ti).

One method of obtaining useful information from these residuals is by making
a Taylor's series expansion

R(w,T) = f (-*)m(T-t)nm+nR
n=O m=O mtn!irm9Tn

but of course n - - constant so that

n
R(irT) = n! 1 L . (T-T)n

n=O n!T
n

The finite size of the computed set of games will, of course, truncate the series
which can be fitted to the data set.

In many cases it will be desirable to use the residuals to do regression analy-
sis rather than Taylor's series fits to the game results. Other methods should also
be considered for analysis of these solutions. For instance solutions of the Lan-
chester model give the form for the time history of a simple engagement. This form
could be used to find a trial solution to the response equations and the Galerkin
method applied to optimize the parameters of the solution through driving the weight-
ed error to zero. Most certainly there will be other methods which could be applied.
The starting point for all, however, is in the application of the concepts of simili-
tude modeling. Toward that end we offer the following conclusions.
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VI. (:ONCL[SIONS. The conclusions reached during the study of conventional
war games are:

a. Use of similitude showed definite results (e.g., air cover through
a barrier).

h. Pi terms are useful for structuring future models. Dimensional equa-
tions can be written for input and output variables to show relationships for model
and game construction and analysis of the outputs.

c. Pi terms are useful for studying doctrine in existing games.

d. Existing conventional games which contain too few physical computations
in relation to the amount of testing should be examined in other ways for size and
computation reduction (e.g., decision tables).

VII. SUMMARY. We have employed the Buckingham Pi Theorem, the major tool of
similitude analysis to various models and war games and find it to be a useful tool,
but one which warrants further use and further analysis.

The authors propose to apply dimensional analysis to other more heavily compute

bound problems, such as the Hemp code, with the expectation of finding relation-
ships between variables more amenable to size and computation rcductions.

In addition, the authors propose to catalog the results of many runs of the
same games using similitude analysis applied to the outputs. The notion of saving
results from old runs and applying new techniques to those results is not new; how-
ever, it deserves more attention than currently given to it.

Finally, the authors strongly feel the techniques presented in this paper offer
new alternatives for looking at old problems and a means of looking at new problems
and new problem areas in an old but promising way.

5 E. D. Giroux, Hemp User's Manual, Lawrence Livermore Laboratory, UCRL-51079, Rev. 1,
December 1973.
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ABSTRACT
A banded matrix H = (h. ). 0 is one such that h. = 0 for j - i

ij i,j=0O1

> r and for i - j > s, where r and s are nonnegative integers. In [51

W. F. Trench and I called it strictly banded if, in addition, r 4 s < N. We

also showed that a necessary condition for a strictly banded -matrix to have a

Toeplitz inverse is that it have a certain special structure fully character-

ized by two polynomials, A(x) of degree r and B(x) of degree s. I

call a matrix having this special structure a Trench matrix. it was also

shown in [51 that a Trench matrix is nonsingular if and only if A(x) and

B(x) have no common zero, and that a strictly banded matrix has a Toeplitz

inverse if and only if it is a nonsingular Trench matrix. In this paper

there are established bounds for eigenvalues of Hermitian Trench matrices

that depend only on the polynomials A(x) and B(x) and not on the order of

the matrix.
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BOUNDS FOR EIGENVALUES OF HERMITIAN TRENCH MATRICES

T. N. E. Greville

Mathematics Research Center
University of Wisconsin - Madison
Madison, Wisconsin 53706

1. Introduction.

In [5] W. F. Trench and I studied the conditions under which a band

Nmatrix has a Toeplitz inverse. More specifically, let H = ij)N a

real or complex matrix, where

hij = 0 for j - i > r or i - j > s

with
r > 0, s >0

Such a matrix we called a band matrix. We called it strictly banded if, in

addition,

r+ s <N
Let

N
Hi(x) = 0 h x]

j-0

be the generating function of the elements of the ith row of H. In this

paper I define a Trench matrix as a strictly banded matrix such that

i

(1.1) H(x) = x i A(x) B(l/x) (s < i < N - r)

N-i

x B(l/x) 1 a x (N - r < i < N)
v=0

where
r s

Ax) = a x B(x) = b xP

V=0P=
are polynomials with real or complex coefficients (according as H is real

or complex) and a0 b0 3 0.

Though the form (1.1) in its full generality previously appeared in a

joint paper [5], it was first suggested by Trench, and, for a particular case,

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.
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had been published by him in 1967 [8]. It is therefore appropriately called

by his name.

By Lemmaa 3 of [5] a Trench matrix is nonsingular if and only if A(x)

and xs B(l/x) have no common zero. (Both real and complex zeros must be

taken into account even if H is real.) In fact, it is shown in [5] that a

strictly banded matrix has a Toeplitz inverse if and only if it is a non-

singular Trench matrix.

It is also shown in [5] that a Trench matrix is persymmetric: that is,

symmetric about its secondary diagonal, and is also quasi-Toeplitz. The

latter term implies that it has the Toeplitz property

h.h..i+l,j+l 1

so long as neither of these elements is in the s by r submatrix in the

upper left corner or the r by s submatrix in the lower right corner.

It is the purpose of this paper to establish certain bounds for the

eigenvalues of Hermitian Trench matrices. More specifically, let the poly-

nimials A(x) and B(x) be given, and consider the corresponding family of

Trench atrices HN given by (1.1) of all orders from r + s + 1 to -. We

wish to establish bounds depending on AC%) and B(x), but independent of

N, for the eigenvalues of H . As there is an extensive literature on

bounds for eigenvalues of Toeplitz matrices (see, e.g., [2], [9]), it is

tempting to think that in the nonsingular case one could deduce bounds for

the Trench matrices from what is known about their Toeplitz inverses. How-

ever, it turns out that this would impose severe restrictions on the choice

of the polynomials A(x) and B(x).

Consider the family of Toeplitz matrices TN  characterized by the
N

doubly infinite sequence ft }- so that T = (ti) N where t..
V V=--' N i i i,j=O' 1]

tj.i, and note that, while the Trench matrices are banded, their Toeplitz

inverses are not, so that the entire sequence ft } is involved. The

available theorems regarding bounds for eigenvalues of such families of

Toeplitz matrices require that the Laurent series

(1.2) t x
V=-

-89-

Wr iN Wa aW II I I l



converge in some fashion in an appropriate region of the complex plane. The

convergence may be weak (see, e.g., [9]), but we wish to extend our consid-

eration to cases in which the series (1.2) does not exist or its convergence

fails entirely.

Now, for the family of Toeplitz matrices whose inverses belong to the

given family of Trench matrices, it was shown in [4] that (1.2) converges in

some part of the plane if and only if all zeros of xs B(l/x) are smaller in

absolute value than all zeros of A(x). The case in which this condition is

fulfilled is an important one, as we shall see in Theorem 1 and its proof,

but by no means do we wish to limit our consideration to that case. More-

over, we shall find it expedient to take full advantage of the very special

structure of Trench matrices by working directly with them rather than with

their inverses.

We do, however, confine our attention to Hermitian Trench matrices.

While the case of greatest practical interest is that of a real symmetric

matrix, our results have been extended to Hermitian complex Trench matrices,

as this was easily accomplished. It is hoped that someone will pursue a sim-

ilar investigation for the more difficult case of non-Hermitian Trench

matrices. In this connection, some fragmentary results are available. Con-

sider, for example, a real tridiagonal Trench matrix H; this implies that

both A(x) and B(x) are linear. If the single zero of A(x) and that of

B(x) have the same sign, it is easily shown that H is similar to a real

symmetric (tridiagonal) matrix. Thus the eigenvalues are real, and the

results of this paper apply to the transformed matrix.

2. The Main Results.

It is easily seen that the Trench matrix H given by (1.1) is Hermitian

if and only if r = s and

(2.1) a b =a b(0 < Uu < r)
V h P V

If we define

r
(2.2) A*(x) = a xv = A(x)

= V

then (2.1) is easily seen to be equivalent to the condition

B(x) = cA*(%)

where c is a nonzero real constant. If c is negative, we can consider

the matrix -H, whose eigenvalues are, of course, the negatives of those of
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H. If c is positive, A(X) and B(x) can be normalized so that B(x) =

A*(x). Thus there is no loss of generality if we limit consideration to

Hermitian Trench matrices with B(x) = A* (x).

The function

r
(2.3) h(x) = A(x) B(i/x) = A(x) A*(l/x) = hV x'

will play an irmportant role in this paper, as it did in [4]. Consider the

io
values of this function on the unit circle. If x = e , it follows from

-1
(2.2) and from the fact that for this x, x = x, that

(2.4) h(x) = A(x) A(x) = IA(x)2 (x - e

Therefore h(x) is real and nonnegative on the unit circle, and moreover

h(x) = f(O) is a continuous periodic function of the real variable 8 with

period 27r. Hence it has a maximum and a minimum value, which we denote by

M and m, respectively.

The following two theorems are the main results of this paper. Theorem

1 deals with the "regular" case in which (1.2) converges and Szeg's theorem

applies; Theorem 2 asserts a weaker conclusion in a more general context.

Theorem 1. Let HN be the Hermitian Trench matrix of order N + 1 > 2r

+ 1 characterized by the polynomials A(x) and B(x) = A*(x) of degree

r > 0. Then H is positive definite if and only if all the zeros of A(x)

are outside the unit circle. It is positive semidefinite if and only if all

the zeros of A(x) that are not also zeros of A*(l/x) are outside the unit

circle. If it is positive definite, all its eigenvalues are greater than m

and less than M, and if p and pN+1 denote the smallest and largest

eigenvalue, respectively,

lim Pl = m , lim PN+ = M
N-NN

Theorem 2. Let HN denote the Hermitian Trench matrix of order N + 1

described in Theorem 1, and let aN denote its spectral radius. Then

a < M for all N, and

lima = M .
N4

3. Some Implications of the Theorems.

Before proceeding to the proofs of the theorems, we shall briefly
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discuss a few of their implications. In some applications (see, e.g., [3])

we are interested in matrices of the form

(3.1) G = I - kH

where H is a Hermitian Trench matrix and k is a positive constant. In

particular we would like to know if the limit

(3.2) G = lim G
n

exists. We note that Oldenburger [6] and Dresden [l] have shown that, for

any square matrix G, G exists if and only if either all the eigenvalues of

G are inside the unit circle, or else +1 is a simple zero of the minimum

polynomial of G and all other zeros are inside the unit circle. The fol-

lowing corollary (first conjectured by Trench) is a consequence of Theorems

1 and 2.

Corollary 1. Let G be given by (3.1), where H is the Hermitian

Trench matrix described in Theorem 1. Then the limit (3.2) exists for all

N if and only if

(3.3) k < 2/M

and no zero of A(x) is inside the unit circle unless it is also a zero of

A* (l/x).

Proof. Let (3.3) and the condition on the zeros of A(x) be satisfied.

Then, H is positive semidefinite by Theorem 1, since any zero of A(x)

on the unit circle is a zero of A*(l/x), and therefore its eigenvalues are

nonnegative. By Theorem 2 the eigenvalues of H are less than M. Since

the eigenvalues of G are obtained by subtracting from unity k times those

of H, the former are greater than 1 - kM and not greater than I. In

fact, if H is singular, 1 is an eigenvalue of G. Since H (and there-

fore G) is Hermitian, all zeros of the minimum polynomial are simple, and 1

is at most a simple zero. Since k < 2/M, 1 - kM > -1 and so the eigen-

values of G are greater than -1. Thus, the condition of Oldenburger and

Dresden is satisfied and G exists.

On the other hand, if a zero of A(x) that is not a zero of A*(l/x)

is inside the unit circle, by Theorem 1, H has a negative eigenvalue.

Since k is positive, this implies that G has an eigenvalue greater than

1, and so G does not exist. Alternatively, if A(x) has no zero inside

the unit circle, but k > 2/M, then, for sufficiently large N, G has a
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negative eigenvalue arbitrarily close to 1 - kM < -1. Thus G* fails to

exist for some N.

4. Proofs of the Theorems.

In these proofs we shall employ a certain special matrix notation. Let

d
P(x) = pv x,

V=0

be a given polynomial. Then we define the matrix

= (P )m in
m,n i=l j=l

whe re

Pij = Pj-i

and it is understood that p. = 0 for v < 0 and for v > d.

We shall also need to use the special matrix JNo which is defined as

the square matrix of order N having l's on its secondary diagonal and

O's elsewhere. Note that multiplying an m by n matrix on the left by

J reverses the order of the rows, and multiplying it on the right by Jm n

2reverses the order of the columns. Of course, JN = I For convenience we

shall often omit the subscript of J when the context makes this clear. A

persymmetric matrix Q is characterized by the fact that

T
JQJ = Q

In the proof of Theorem 1 we shall find the case of a singular Trench

matrix to be more difficult than the nonsingular case, and we shall need a

lemma that expresses a singular Trench matrix as the product of a nonsingular

Trench matrix and two rectangular matrices. Because singular Trench matrices

appear to be interesting in their own right, the lemma is stated with more

generality (i.ei, without the restriction to Hermitian matrices) than is

required for the purposes of this paper.

Lemma 1. Suppose the polynomial

q
E(x) e x

v0

divides both A(x) and xs B(l/x) and define

E (x) x E(l/x)
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r-q
(4.1) A(x) = A(x)/E(x) = x

v=0

and
s-q

(4.2) B(x) = B(x)/E #x) = x

V=0P

Let H be the Trench matrix of order N + 1 characterized by A(x) and

Bx) as in (1.1), and let D be the Trench matrix of order N - q + 1

characterized by A (x) and B(x); thus, the generating function of the

elements of the ith row of D is

i
,I i(x) I L xi= (o<i < s- q)

(4.3) D. (x) = xi A(x) B(1/x) (s - q < i < N - r)
N-i

x B(i/x) a x" (N - r < i < N - q).
V= 0

Then,

(4.4) H = E # T DE
N-q+l,N+l N-q+l,N+1

Proof. For convenience let us drop the subscripts of the rectangular

matrices in (4.4). It follows from (4.3) and from the structure of E that

the generating function of the elements of the ith row of DE is

D. (x) E(x). (Note that D is of order N - q + 1, and that the "special

rows" at the bottom of D are r - q in number, and (N - q + 1) - Cr - q)

N - r + 1.)

With the understanding that b = 0 for V > s, the first two parts of

(1.1) can both be written in the form

i i
(4.5) Hi (x) = A(x) I bP x =A(x) b i- x

U i0 U i

Thus, by (4.1) and (4.2) we have
i

(4.6) D1 (x) - i(x) x x

Therefore, the generating function of the elements of the ith row of E# T DE

is
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i i k
eq-i+k Dk (x) E(x) = A(x) I eq-i+k Sbk_ 1

k=Ok=0 P=0

by (4.1) and (4.6). Reversing the order of summation gives

i i(4.7) A~x) I XV e q-i+k S '
tj=0 k= t

and the summation with respect to k can be rewritten as

i-P" e b = b.
=0q-v i-p-v i-P

V=O 1r

by (4.2). Thus (4.7) reduces finally to

i
A(x) I b. x' : H. (x)

1=0 - 1

by (4.5). This proves (4.4) for rows 0 to N - r, inclusive, of H.

Let us now consider the matrix JHJ, in which the order of both rows

and columns of H is reversed. By means of (1.1) it is not difficult to see

that this is a Trench matrix in which, as compared with H, the roles of

A(x) and B(x) are interchanged. Therefore by the first part of this

proof, the equation

(4.8) JHJ = ET (JDJ)E #

holds for rows 0 to N - s, inclusive, of the matrices on both sides.

Now, it is easily verified that JET J = E#T  and JE# J = E. Thus,

multiplying (4.8) by J both on the left and on the right gives (4.4). As

rows 0 to N - s of JHJ become rows s to N of H (with the order of

the elements reversed), this completes the proof of the lemma.

Proof of Theorem 1. This proof consists of three parts. First, we

shall use Szegd's theorem to show that if all the zeros of A(x) are outside

the unit circle, then H is positive definite, and the inequalities and

limiting relations for the eigenvalues follow. Second, we shall prove that

if A(x) has one or more zeros on or inside the unit circle that are also

zeros of xr A*(l/x) (but all other zeros are outside the unit circle), then

H is positive semidefinite. Finally, we shall show that if A(x) has a

zero inside the unit circle that is not a zero of xr A*(1/x) as well, H is

not positive definite or semidefinite.
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Let all the zeros of A(x) be outside the unit circle. Then the zeros

of Xs B(l/x) = xr A*(l/x) are all inside the unit circle, and it was

shown in (4) that [h(x)] -1 = [A(x) A*(l/x)]-  has a Laurent expansion (1.2)

that converges in an annular region containing the unit circle. It follows

from the discussion preceding Theorem 1 that [h(x)]-i is real and posi-

tive on the unit circle, its maximum and minimum values there being 1/m and

l/M, respectively. Therefore, by Szeg6's theorem (see Chapter 5 of [2]) the

eigenvalues of T N = H are greater than I/M and less than i/m for all

N, and these bounds are the limits of the smallest and the largest eigen-

values as N goes to infinity. As the eigenvalues of HN are the recipro-

cals of those of TN, the statements in Theorem 1 concerning the positive

definite case follow at once.

In order to deal with the case in which H is singular, we specialize

the formula (4.4) established in Lermma 1. We recall that the zeros of

B(I/x) = A*(l/x) are the conjugates of the reciprocals of those of A(x).

Let all the zeros of A(x) that are not also zeros of A*(l/x) be outside

the unit circle. In fact, since the conjugate of a point on the unit circle

is also its reciprocal, any zero of A(x) that is on the unit circle is also

a zero of A*(l/x). Therefore, let A(x) = i(x) E(x), where the zeros of

i(x) are those of A(x) that are outside the unit circle, and the zeros of

E(x) are those of A(x) that are also zeros of A*(l/x). It follows that

E*(x) and E #(x) have the same zeros, and are therefore identical. Since

E (x) is obtained from E(x) by reversing the order of the coefficients,

and E*(x) by taking the conjugates of the coefficients, we must have

a =f a (v ffi0,, . . ., q)
q-v V(v #l#q

#T CT
It follows that E ECT , and (4.4) becomes

(4.9) -CT DE
49-q+l,N+l N-q+I,N+l

CT
If u is an arbitrary nonzero vector, and v - Eu, then by (4.9), u HN u

VCT Dv, which is nonnegative, since D is positive definite. Therefore,

H is positive semidefinite.
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We come finally to the third part of the prooi. Let A(x) have a zero,

x = inside the unit circle such that A*(C- ) 4 0. Since H is a Trench

matrix, a0 $ 0, and so y i 0. It follows that (which is of course

outside the unit circle) is a zero of A*(l/x). Now let v be the vector

whose ith component (starting the numbering with 0) is It follows

from the definition of the generating function that the ith component of

- - 1Hv is H. (E ). For all but the first r components (i.e., those numbered

11from 0 to r 1 ), A*(f) = 0 is a factor of H. (i ) and so these com-

ponents vanish. For 0 < i < r,

(4.10) Hi(-I A(-i) a 1 T-i
JJ=0

Now, let the polynomial

r-l
F(x) I fV x

v=0

be defined by

(4.11) A(x) = (x- &)F(x) = -(l - x-l)F(x)

Then,
F(x) = -X&( - xl) - 1 A(x)

and consequently,

f = a Va-j-I " V a (0 < r)J v=0 _-- =Oa

or

(4.12) a = -f "
=0 J

Substitution of (4.11) and the conjugate of (4.12) in (4.10) gives

.( 1 ) - -- 1 - -- 1)- = -- 1

and so

r- € v I&'H- llF(T F(C
i--O

&ai expression which is clearly negative, since JEi < 1 and
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0 jO A*(¢ - ) = A( -) = (1-

- -l
so that F(f ) / 0. It follows that H is not positive definite or semi-

definite. This completes the proof of Theorem 1.

In the proof of Theorem 2 we shall need a lemma that expresses the

Hermitian Trench matrix H in terms of simpler matrices. Let us define

A(x) by

A(x) = r A*(l/x)

and let us define A as the square matrix of order N + 1

(4.13) A =

Then we have

Lemma 2. If H is the Hermitian Trench matrix defined in Theorem 1,

(4.14) H = CT -C

(4.14) H = N+lN+l AN+ ,N+l -'-

Proof. First we note that H and the first term of the right member of

(4.14) agree in all their elements except the square submatrices of order r

in the lower right corner. For all but the last r rows, this follows

easily from (1.1) taking B(x) = A*(x). For the last r rows, excluding the

square submatrix in the right corner, it follows from the Hermitian symmetry

of both matrices. Moreover, the second term of the right member of (4.14)

has zeros everywhere except in the corner submatrix mentioned. These obser-

vations make (4.14) at least plausible, ard permit us to limit our attention

to the r by r submatrices in the lower right corner.

In the case of the first term of the right member of (4.14), this corner

submatrix is obtained by multiplying the last r rows of the first factor by

the last r columns of the second factor. Taking into account that some of

the elements of these rows and columns are zeros, this product can be written

as

-CT
r,2r r,2r

Moreover, by partitioning the first factor of this latter product into the

first r columns and the last r columns, and the second factor similarly

by rows, we obtain

A A A A + A A
r,2r r,2r r,r r,r r,r r,r
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or

CT A - CT _ - CT
r,r r,r r,2r r,2r r,r r,r

Now, the left member of (4.15) is precisely the square submatrix of

order r in the upper left corner of H. Since H is Hermitian and persym-

metric, the one in the lower right corner is obtained from it by reversing

the order of both rows and columns and then taking the conjugate. According-

ly, let us perform these operations on the right member. As the first term

is Hermitian and Toeplitz, the effect of the operations is to leave that term

unchanged. Coming now to the second term, since

JA J = J A J J AcT J
r r,r r,r r r r,r r r r,r r

we can perform the operations on each factor separately. We note also that

the effect of the three operations on a matrix P is to take the conju-r ,r

gate transpose. Thus the result is AC T A . In view of (4.13), this
r,r r,r

proves (4.14).

Proof of Theorem 2. Let us denote by K and L the respective

products in the right member of (4.14), so that

H= K- L

Clearly K is Hermitian positive definite and L is Hermitian positive semi-

definite. Let v be an arbitrary nonzero vector of complex elements. Then

the Rayleigh quotients satisfy

CT CT CT CT

v v v v v v v v

Let

N Jut
V(t) I v e

v=O

be the characteristic function of v. Then,

-it N t
Ae )V(t)= we

V=-r

where, for 0 < v < N, w is the vth component of v+,N+l v. (It may be

helpful to the reader to think of the vector v as being extended by annex-

ing a number of zeros at the bottom.) By Parseval's formula (see 17],

p. 699)
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CT V=IV 12 1 f 2 2
vv IV (t) 2 dt

0

while

CT V12 1 2I 12Kv = AN+l,N+l v < f A(e - ) V(t) t
0

But by (2.4), IA(e- it)12 = h(e - i t), and therefore

CT 1 1i2 2< CT
(417) v Kv< < f h (e )Iv(t) dt <V ( v0

Note that since the zeros of V(t) are a set of measure zero, the second

inequality of (4.17) could be replaced by equality only if h(x) is a con-

stant function, which would imply that H is diagonal, and therefore a

scalar matrix. This is tantamount to saying that r = 0, contrary to hy-

pothesis (see description of H in Theorem 1).

It follows from (4.16) and (4.17) that

CT
v Hv(4.18) CFT < MCT
V V

and, since the greatest eigenvalue of H is the maximum value of the

Rayleigh quotient in the left member of (4.18), we have shown that the great-

est eigenvalue of H is less than M.

However, it will be noted that in Theorem 2 we have not imposed the

condition that would make H positive definite or semidefinite. Thus H

may have negative eigenvalues, and it is conceivable that such a negative

eigenvalue might exceed M in absolute value. We must prove that this is

not the case. The algebraically smallest eigenvalue is the minimum value of

the Rayleigh quotient in the left member of (4.28). Since K and L are

both Hermitian positive semidefinite, this minimum value is greater than, or

at least equal to the negative of the maximum value of the Rayleigh quotient

with respect to L.

It follows from (4.13) and (4.14) that the elements of L are all zero

with the exception of the square submatrix of order r in the lower right

corner. Because of this structure, the eigenvalues of L, other than zero,

are those of L - A A . Therefore the maximum Rayleigh quotient with
r,r r,r

respect to £ is the same as that with respect to L. Therefore, a lower
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bound to the eigenvalues of H is - , where p is the largest eigenvalue

of L. In order to complete the proof that the spectral radius of H is

less than M, we must show that < M. In fact, if v is an arbitrary

vector of r complex components and its characteristic function is

r-I1

V(t) = v e
V=0

then, by reasoning closely parallel to that used in the first part of this

proof, we conclude that
2T 1vCT

VCT Lv < f 2r IA*(e - i t) V(t) 12 dt < v
0

Since L is Hermitian, is the maximum value of the Rayleigh quotient.

To prove the second part we let M' be an arbitrary positive constant

less than M and show that, for a suitable vector v and for sufficiently

large N, the Rayleigh quotient v H v/v CT v can be made larger than

MI. Since h(e i t ) is a continuous function of t and M is its maximum

value in to, 2 7], there is some value t = r, such that

h(e i T ) > M'
T

Let us choose v = [v0 , v, . ,vI so that v = e for 0 < v < N.

Then, except for the first r and the last r components, the Vth compo-

nent of Hv is h(e i T ) v . Therefore
V

(4.19) vC T Hv = (N - 2r + )h(e iT) + C

where C is the contribution of the first r and the last r components.

Since every component of v has absolute value 1, an upper bound to the

absolute value of C is the sum of the absolute values of the elements in

the first r and the last r rows of H. Call this C', and note that C'

does not depend on N.

Now choose N sufficiently large so that
C' + 2r h(e i )

N+l>

h(e i T) - M'

Then

(N + l)(h(e i
T ) - M'I > C' +'2r h(e ,
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or

(N - 2r + 1)h(e i T ) > (N + 1)M' + ICI

and consequently

(4.20) (N - 2r + l)h(e i T ) + C > (N + 1)M'

Since ~IV 12 = 1 for every v,

CT
v v N+ 1

and therefore by (4.19) and (4.20)

CT
--T V> Me

CT
V V

as required. This completes the proof of Theorem 2.
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EFFICIENT ALGORITHMS FOR CONTINUOUS PIECEWISE
LINEAR APPROXIMANTS WITH VARIABLE KNOTS

Royce W. Soanes Jr.
US Army Armament Research and Development Command

Large Caliber Weapon Systems Laboratory
Benet Weapons Laboratory

Watervliet, NY 12189

ABSTRACT. Algorithms are derived for selecting and moving the knots
of a continuous piecewise linear approximant. Knots are selected and
moved as a subset of n equally spaced mesh points. As knots are selected,
neighboring knots are moved for the purpose of more closely approximating
their optimal values. A least squares fit criterion is used and the
movement of each knot improves the global error sum of squares. If all
the interior knots are moved during an iteration, only 0(n) arithmetic
operations of any kind are consumed. A simple example of the reduction
in computational complexity obtainable with the methods herein discussed
is the least squares fitting of a straight line to an arbitrarily large
set of data using only five multiplications or divisions.

I. INTRODUCTION. The purpose of this article is to derive efficient
and reliable algorithms for attacking the problem of continuous piecewise
linear approximation of relatively large amounts of data, consisting of
perhaps thousands of points. Approximation is done in the least squares
sense, where we strive to make the global error sum of squares (SSE)
small. We are not, however, concerned with obtaining a precisely optimal
solution, as this would be prohibitively expensive for the large amounts
of data involved [1]. The continuous piecewise linear approximants
(linear splines) used will be defined over a variable knot mesh with
respect to which we will nearly minimize global SSE.

Authors of available algorithms [1,3,5,6] seem reluctant to deal
with the large amounts of data which are common as a result of analog to
digital conversion. Indeed, they generally consider no more than a few
dozen data points and only a handful of knots, neither do they consider
data with an appreciable noise level. This reluctance is evidently due
to the large computation times that would result in the large sample case
or to the unreliability of analytic methods of seeking global optima in
the presence of noise. On the other hand, elementary linear smoothing
methods are efficient, but they either suffer from Gibb's phenomenon in
the case of oscillatory kernel smoothing or are prone to cut off corners
in the case of positive kernel smoothing [2].
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The algorithms presented here are conceptually simple and therefore
not difficult for nonspecialists in this area to implement. The data
mesh is uniform as is invariably the case with data converted from analog
to digital form. The nonuniform knot mesh is a subset of the uniform
data mesh. We do not select knots from a continuum because the unlimited
number of analog digital points that can be generated makes continuous
variation of the knots unnecessary. Also, the algorithms derived here
make exhaustive local searches for global improvements of SSE quite
efficient.

In all that follows, let slow operation denote multiplication or
division and let fast operation denote addition or subtraction. Slow
operation and fast operation will be further abbreviated to SO and FO
respectively. When we subsequently refer to n t c operations of one kind
or another, where c is a small integer constant, we will write n for
simplicity. In general, we will refer only to the high order term in
computation time expressions i.e. 5n2 + 2n + 3 will be "about 5n2".

II. A SIMPLE EXAMPLE OF COMPLEXITY REDUCTION. Shamos [4] describes
the ordinary algorithm for fitting a straight line as requiring O(n)
time. He makes no distinction between SO's and FO's. Since the usual
formulas are O(n) for both addition and multiplication, and the O(n)
additions cannot be avoided, he remains correct. The O(n) SO's involved
in fitting a straight line may be reduced to five, however, as the
algorithm following shows; multiplications by small integer constants
are not counted here since these may be done faster through addition.

So = To = 0

Si = Si- 1 + Yi

l<i<n

Ti= Ti-1  Si

c = 2(Sn + (Sn - 2Tn)/n]/(n + 1)

v, = [2 (Tn - Sn)/n - c(n - 2)]/(n - 1)

V2 = vI + 3c where v, and v2 are the values of the approximant
at the left and right extremes of the equally spaced data. This algorithm
is derived using the well known formulas for sums of first and second
powers and summation by parts. Summation by parts, for instance, enables
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one to reduce the sum

n

involving n SO's and n FO's to the expression

n n i
(n +l Y. E Y

1=1 1 11 j 1

involving only one SO and 2n FO's.

For the sake of brevity and to emphasize the central role played by
summiation by parts, the algorithms derived here are called SBP algorithnis.
It is perhaps not particularly important to derive more efficient formulas
for fitting a straight line, but it is important to reduce 0(n) SO's to a
constant number of SO's because the same technique will make it possible
to reduce 0(n2) SO's + 0(n2) FO's to 0(n) SO's + 0(n) FO's in the next
algorithm.

III. DESCRIPTION OF FUNDAMENTAL ALGORITHMS SBP (1) and SBP (2).
Consider a linear spline consisting of two segments i.e. two fixed end
knots and a single variable internal knot between them. There is only
one way to find the globally optimal internal knot: for every internal
data mesh point, set up the three normal equations, solve them for the
three ordinates, and compute the SSE. Progranmming this algorithm naively
(not using sunmmation by parts) may be done in about 7n2 SO's and Wn FO's.
On the other hand, the SBP algorithm for this case (SBP(l)), accomplishes
exactly the same computation using only 15n SO's and about 35n FO's. The
ratio of naive effort to SBP effort for SO's therefore goes approximately
as n/2. The effort ratio can obviously be as large as 1000 to 1 for a
data set consisting of only a couple of thousand points. The SBP(l)
algorithm is used to pick out points of abrupt behavior in the data for
the purpose of splitting subintervals and inserting new knots.

The other fundamental algorithm presented here is quite similar to
the preceding one except that the end ordinates are held fixed instead
of being free. There is therefore only one normal equation instead of
three. The optimal internal knot for this case is obtained in 12n SO's.
This SBP(2) algorithm assures improvement of global SSE when it is used
to move the knots.
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IV. THE GENERAL NORMAL EQUATIONS. Let (xi,yi) 1 < i < n be a large

set of data with equally spaced x values and let (ui,vi) 1 - i <_N be a

small set of data whose linear spline approximates the (x,y) data in the
least squares sense. The u's are a subset of the x's.

The linear spline approximant on the ith knot subinterval is defined
as:

Li(x) = (1 - ri(x))v i + ri(x)vi l

where

ri(x) = (x - ui)/(ui+, - ui )

Let M, be the mesh index of the ith knot. The error sum of squares is
given by:

N-l M+ -l N
SSE = E E (Li(xm ) - ym)2 + r (vi - YMi)2 .

i=1 m=Mi+1 i=I

The following symbolic abbreviations will hold throughout the article:
abbreviate ri (xm ) to ri and I - ri(xm) to si.

The error sum of squares therefore becomes:
N-1 Mi -1-l N

SSE = Z (siv i  rivi+1 - ym) +if I  (v i - YMi 2
i=1 m=Mi +1 1

Setting the partial derivative of SSE with respect to v. equal to zero, we
have:

M-_I  Mj-I Mj+1-1

V. r S. + vj(l +mM r + r s )

m=Mj +1 • j =  m=M J+ 1 m=M +1
M.-1 i-I J 11 41

+* M.+ V r j y + E~- ye- + t 4 ~ymSj(41JM=14 j+1 J j Mm-] MM +

if vj_, , vj and vj+, are defined.
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If only vj and vj+1 are defined, the rsult is:
Mjl +l -lM. 2 - l Mj+.- l

vE(l + 7 sj) + Vj+i E rjsj y + E YmSj (4.2)
m=Mj+l m=Mj+l j m=Mj+l

If only vj_, and vj are defined,

Mj -l Mj-1

vj-1 + vj(l += +r-l)
m=M3 -1 +1 r s j-1 +1

Mj-l

4i. + E Ymrjl (4.3)
M m=M.1 +1

The following abbreviations regarding summation notation will be

observed throughout the article.

Mi

Abbreviate E to E
m=Mi--1

Mi +1
E to 7

m=M i  0

and Mi+1

E to E
m=M~ -10

The normal equations therefore become:
2

Vi Z r i . s. + vi(-I + E rii + O Es2) + Vi+lz r i s i

-1 11 1 1-1 0 0

-YM + lymr _
1  +EYmS1 (vi. , , vi and vi+j defined) (4.4)

1 -1 0
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22

si2 + vi  Eris i = ZYs(Vadv defined) (4.5)vi 0 1+1 0 i Y~ 0v i an v+j

vi_jEiri si_1 + vi.z r 2 1 = E ymri.i (vi. and vi defined) (4.6)-1 -1 -1

V. GENERATION AND SOLUTION OF SBP1. NORMAL EQUATIONS. Considering
only three local knots ui1 , ui and ui+ , we may write down the normal
equations for vi. 1 , vi and vi+j using (4.6), (4.4), and (4.5) respectively.

2

vi_ 1 E Si. + vi E ri-Is 1. = _i-I YmSi. (5.1)

Vi-I r 1 s + vi1(-I+ ir -+Es?) +l vi+1 Eris i

l1 i 1 v 1 . 0~~ 0 V. i~

-YM + -ymri-I + zymSi (5.2)

2
vi E r isi + vi+ 1 Er i = E ymri (5.3)

0 0 0

Adding 5.1 and 5.3 to 5.2 we obtain

vi- - si- + vi(-l+Eri-1 +Es) + vi+j Z ri =_F Ym
-l -1 0 0 -10

since r+s =1.

The contents of the appendix should be reviewed at this point.

After substituting sums from the appendix into these normal equations
and performing a couple of row operations, we may obtain the following
simplified normal equations:

V-11 (2n.i_+ 1 ) + v1 (ni_ -I) = 6(T_i-Si )/(ni_+l) (5.4)

Vi_1 + vi(n i_l+ni+2) + vi+1  =-2$.ro(T. 1-S.)/(ni. 1 +l)

+ (T_ -S.I-T_10 )/(ni+l)] (5.-)

vi(n-l) + vi+l(2ni+l) = 6[S_10 + (T.1-S- 1 -T 10 )/(ni+l)] (5.6)
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Excluding multiplications by small integer constants, the augmented matrix

for these equations may be computed in only two SO's.

Using Gaussian elimination on:

a1. a12 0 c]

1 a?2 1 c 2

0 a3 2 a3 3 3

we have:

a2 2  a2 2 - a12/all

C2  c 2 - ci/all

q a 3 2 /a22

a33 - a 3 3 - q

C3  - C3 - C2q

Vi +1- C 3/a 3 3

Vi 4- (c2 - vi+I )a 2 2

vi_1 - (c, - a12vl)/a11

Hence, v1 . I , vi and vi+I may be computed in eight SO's.

VI. ERROR SUM OF SQUARES FOR SBP(1). The SSE for SBP(1) is given by:
Ml-I Mi+1

SSE = E (sl.i vi. 1 +r i _.v i -ym)2 + Z (sivl+rivi+-yM) 2 + (vi-yMi) 2

1=M _I, )m=M (+.

= z (s1 V1_1+r. v1 - + E (si4 +rivi+l -yM) 2 - (Vi-YM )2 (6.1)
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Expansion of these sums, making substitutions from the normal equations, and
considerable fortuitous cancellation yields:

2

SSE =-Z m" vi -- Z si-Ylm -vi.( E r i - l ym + E s i y m - YMi)
-10 -1 -1 0

- vi +1 Eriym (6.2)
0

If we now substitute the required sums from the appendix into 6.2, we get the
final expression for SSE:

SSE=Ey2+(vi-vi)(T -S)/n + (v -V)(T -S +S -T )
-10 M -1 I - v i' i+1 1 -1 -10 -10

/n i - vi+1S . 10  (6.1)

It is obvious that the sum of squares of the data values in 6.3 is a constant
component of SSE for any ui between ui1 and ui+. We need not therefore ac-
tually compute this sum of squares as we exhaustively search for the ui with
the smallest SSE. The variable component of SSE may therefore be coripute
in unly five SO's.

Given a ui, we may therefore set up the SBP(l) normal aquations, solve
them and ultimately compute the variable component of SSE in orly fifteen SO's.
If n is the number of internal mesh points, we may find the best u i in 15n 1,0's.
It is also iffportant to notice that S-1 0 and T_.-, do not depend on the position
of ui and that although S_, and T_1 do depend on the position of ui, these sums
need only be updated using two FO's per mesh point as we calculate SSE for each
internal mesh point. The significance of this is that although the computation
of SSE for one and only one ui is 0(n) for FO's, the computation of SSE for
all the ui's is still only 0(n) for FO's. Hence the entire SBP(l) algorithm
is-O(n) for both SO's and FO's.

This is in sharp contrast to the 0(n2) complexity for SO's and FO's which
would have been the case had summation by parts not been exploited. This overall
reduction of complexity from 0(n2) to 0(n) makes the SBP(l) algorithm a viable
technique, especially in the context of large sets of data and in spite of the
fact that it is an exhaustive, brute force search method.

VII. NORMAL EQUATION AND SSE FOR S.BP(2). If the endpofnts are fixed
instead of free In the 3 knot case, there is only one normal equation (5.2):

vi- r 1 si1  + vi(-I+z r 2_+E s 2) + v i +1 s r) i s i

-111 01 0 1  r

-YMi + zylmri. 1 + EYmSi
l 0
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Substituting the expressions for the various sums from the appendix, we
have:

v 1 (n i-l/n i _ ) + vi(l/ni_ Vni+ 2 (ni_ 1+ni)) * vi+1 (n i - 1/n i )

= 6[ _ 1-T_1)/ni_ 1 - (S_1-S _+T_1 -T_1 0 )/ni] (7.1)

The general expression for SSE is given by 6.1.

Expanding 6.1 and substituting 5.2 into it yields:
2 2

SSE = .y + v. (v Zs. -2Z s. y)-10 m 1-1 -I I i 1 -I i1 m

22 _, 2 2+ vi+i(vi+1 rr-2Zrym) - vi- ri-1+-si- (7.2)

0 0 -1 0

Using the sums from the appendix in 7.2 gives:

2
6SSE = 6 y + vi 1 [v i 1 (1/n- 1 +3+2n i 1 )-12(T _ -S _ 1 )/ni _ ]

-10

+ vi+ 1 [vi+ 1 (l/ni+3+2ni)- 1 2(S _ 10+(S- 1 +T_I -S _ -T 1 0 )/n i )]

- vi(l/ni 1- + I /ni+2(ni _1 +ni)) (7.3)

Excluding multiplications by small integer constants, the variable
component of SSE in the SBP(2) algorithm may be obtained in 12 SO's.

VIII. A STRATEGY FOR USING SBP(l) AND SBP(2). There are many ways
one could employ SBP(l) and SBP(2) for knot selection and movement
respectively. Based on experimental results, the following technique
seems to be quite reliable - especially when there is considerable
variation in noise level or ringing amplitude.

(1) Initialize the knot set to consist of three knots and corresponding
ordinates using SBP(l).

(2) Find the knot subinterval which shows the most "promise" for
knot insertion.

(3) Insert a knot in this "promising" interval using SBP(2).

(4) Use SBP(2) to move the knots to the left of the newly inserted
knot and stop when the position of the moved knot doesn't change
significantly (relative to the sum of its left and right knot subinterval
lengths).
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(5) Use SBP(2) to move the knots to the right of the new knot in

the same manner.

(6) Move the new knot once.

(7) Quit or go back to (2).

The amount of "promise" that a subinterval exhibits for knot insertion
is determined by first computing the SSE (variable component) for the
knot subinterval in question and then tentatively inserting a knot using
SBP(l) and noting the SSE associated with this tentative insertion. The
difference between these two SSE's gives some measure of how much the
global SSE is likely to be ultimately reduced by the knot insertion. The
knot subinterval having the largest such reduction is therefore picked
for knot insertion.

It should be recalled that when we use SBP(2) for moving a knot, we
are also redefining the ordinate of the approximant corresponding to the
moved knot. What this amounts to is simply Gauss-Seidel iteration for
the ordinates simultaneously mixed with knot movement. This doubly
iterative process makes it unnecessary to compute the global normal
equations and solve the resulting tridiagonal system.

IX. SSE FOR APPROXIMANT OVER ONE KNOT SUBINTERVAL. The SSE for
knot subinterval i-1 is derived here.

SSE = E(silvi_1 +rivi-ym)2 = y +

-vivi_1) + (vi-vi.1 )2 /(6ni.-) + (2/ni_1 )(Tj-S _ 1)(vi-vi..)

-2viS_j

The variable component of this SSE can be computed in 9 SO's.

X. FIRST AND LAST ORDINATE ESTIMATION. The normal equation for the
first ordinate of the approximant (i=1) is:

ViZ S2 + vi 1 E ris = ys

Substituting sums from the appendix gives:

v1 (1/n1 +3+2n,) + v2(nl-l/n1 ) = 6(T0-S0 )/n1  (10.1)
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With 10.1 we compute v, when v2 is held fixed. This is essentially a
special case of the SBP(2) algorithm; we cannot move the first knot but
we must estimate its ordinate.

The normal equation for the last ordinate of the approximant (i=N) is:

vi--z ri-lsi-l + vi r i - I  = Ymri'-

Substituting sums from the apperdix in this gives us:

vNi(nN-l-l/nN_) + vN(l/nN-i+ 3+2nNl) 6[S_+(SI-T_ )/nNi (10.2)

With 10.2 we compute VN when VNi is held fixed.
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APPENDIX

Let ni  the number of data mesh subintervals in the itl knot subinterval

. nih = ui+1 -u i = Ii where h is the mesh size

now, xm = x) + (m-l)h

and ui = x, + (Mi-l)h

. . ri(x1n)= (xm-ui)/li = (m-Mi)/n i

similarly, ri_,(xm) = (m-Mi_)/ni_.

These last two identities are used throughout the derivation of the various
sums.

All the sums given here in the appendix are calculated using the
formulas for sums of first and second powers and summation by parts:

n

i i = n(n+l)/2i=l

n
i2 = n(n+l)(2n+l)/6i=1

n n n i
r a- b i  = an+z T bi -. £ai.z b3I=m i=m i=m j=m

The summation by parts formula (due to Abel) may be derived in the following
manner:

A ai bi = ai+bi+,-aab i

= (ai+-aiai)bil - aib i

= bl+]i ai + a1 i b

ay bi = i aibi - bi, ia i

n n
z aib = an+ibn+i -ambm - Z b+ 1I a i
i=m i=m

let cI = bi
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n
E c. b -b

i=m I n+ m

n nn

E~ ajcj = ar (h+.z ci) ambm -Zai (+.E~ ci)

n n
an+i bm +an+, z c ambm - (a n+i - - a c.

1=m i=M JyM

n n

i=m i=M j=m

The power sum formulas may also be derived using summation by parts.

Sums.
M1

m=M1 -

Mi k

k=M i1 m=-Mi-

M+1

S-1 = E Y,

Mi+1 k

kM1 m=Mi-1

E ri-ym= S- + (S- 1-T_ )/n.i-

-l M=( -1 -5-1 -1n -

E rjm -0 (S-10 -S1I +T_ I-T_10 )/n1
0

I iM= -m S - S 0-S T -T 0)no1



: : = r +l (n 1/ 6 i
~2z -1 r- 1 = n _ + )2 i ,I/ 6 -,

E s = r i  - (ni+l)(2ni+l)/(6ni)
0 0

z si- ri_1 = (niI+l)/2
-I -1

E si = r ri = (hi+l)12
o 0

E s (r 1+)(n -1)/(6n i )

z rls i = (n,+1)(nl-l)/(6ni)0

M+i
Sc =

nr=M i

Mi+ 1  k
To Z r Ym

k=M i mM i

t riy m  = [(ni+l)So-To]/n i
0

E siY. = (To-So)/n i
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An Extension Ca of Cj That has an Application in Learning Theory

Charles R. Leake
US Army Armor and Engineer Board

Fort Knox, Kentucky 40121
ABSTRACT

Ca which is an extension of Cj is discussed. Ca is a class of algebras

that are commutative, generally nonassociative with inverses for all non
zero elements when the ground field is the reals. In general Ca con-
tains divisors of zero. Each Ca has an involutorial automorphism and is
a quadratic extension of the ground field. Moreover, for each element x
in any Ca there are unique elements TX and Nx. An example is given show-

ing how previous, experimental and concurrent learning can be resolved
and how the magnitude of the learning or training effectiveness can be
measured.

1. The concept of C and CN. In a recent paper f91 has shown that Cj

and CN have applications in thermodynamics. Cj is generally a commu-

tative, nonassociative algebra of order J with identity lO which under
the condition that the ground field is the real numbers contains an in-
verse for each nonzero element as well as zero divisors. In a special
case for J = 2, Cj=C, the complex numbers and for J = 1, Cj=R, the real

numbers. CN is generally a noncommutative, nonassociative algebra of

order N with identity 1/O which under the condition that the ground field
is R contains an inverse for each nonzero element as well as zero divi-
sors. Under appropriate conditions for N = 1,2 & 4; CNYR ' CN=C and C=Q,

the quaternions. CN & C were also shown in r9l to belong to a broad

class of algebras that are known as quadratic extensions r of a field K.

Considerable work has been done on sets r. In (31 r is character-
ized for the real, complex, quaternions and cayley number systems. In
tv r is generalized to a field K where there is an element i such that
i -Oi- = o . The concept is then extended to the case when K is a commu-
tative ring with unit that admits an involutorial automorphism in '5l
and in r6l the geometry of the place of a quadratic extension r of a
field K is discussed. In (7l and r8l there are examples of when r
is a nonassociative algebra.
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Quadratic extensions belong to a class of algebras commonly known
as Clifford numbers. Vander Waerden in fll) discusses a class of these
numbers which he calls hypercomplex numbers.

This paper will be limited to a discussion of Ca which is an ex-
tension of Cj.

2. The concept of the commutative algebra Ca over a field K of character-
iLic t 2. Ca is an algebra of order M > 1 where 1, e2, e3, ..., em is a

basis for Cu. In the case of M = 1, Ca = K. In addition there exist a1 ,

02, -.., aM e K. Using the operations defined on K, Ca has the following

sum and products defined on it for all a, b e Ca and e, ai, bi eK

M
(1) a + b = z (ai + bi) ej

i=l

M
(2) ea = e E ai e i

i=l

M M
(3) ab = (a2  alb , z ai2 aibi) 1 + z (ai ai a , bi + aia aibI) ei

i=2 i=2

The automorphism a - a is

M
(4) a = a.1 - z ai ei

i = 2

The unit or 1 in Ca is

M
(5) 1= 1 -iOe

i =2
The trace Ta and norm Na are

(6) Ta + a and (7) Na aa
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Ta and Na c K and ab = ba for all a, b 6 Ca. When the characteristic

of K is 0, K = T, the set Ca has inverses

(7) a-1 =a
IRa

Moreover, in general

(8) Nab t Na Nb

(9) Na2 t (Na)2

For ai = 1, i = 1, 2,..., M, Ca = Cj.

Each element a of Ca satisfies the equation,

(10) a2 _ Ta a + Na = 0

Thus Ca also belongs to the class of algebras known as quadratic ex-
tensions r of a field K. See rli, 2 , r3, (4) , r51 and r7' for a
more generalized discussion of quadratic extensions.

3. An application of Ca to learning theory. One of the problems with
learning theory is its lack of a geometric base. Early discoveries in
science were related to Euclidean geometry and many of its premises were
directly related to observations made in terms of Euclidean geometry. We
are no longer so naive as to believe that the universe is Euclidean, but
in moving away from this geometry, we have been led into a position where
geometries are now abritrary. In some sciences the geometry is related to
the law of least squares with a statistical intepretation of the results,
but this makes it difficult to combine results from other sources. The
least squares approach has also been tried in educational circles, but
with rather disappointing results. What is needed is a geometry that
incorporates recent learning and affords the researcher the opportunity
of combining da a from other sources with his theories such as those in
flO and Il & 12'. In order to do this, it is required to move beyond
one and two dimensional space into N-dimensional space. Until now thought
in this area has been limited due to the striking results provided by the
Cartan-Hurowitz theorem. However, Jordan has provided us with some in-
sights into the problem of multi dimensional algebras, but these have
been mainly limited to the physical sciences and biology. Ca offers us
a geometry which is relevant to experimentally based educational data.

-121- !

- I W ! - P I I



Of prime concern in education theory is coordinating previous
learning experiences with those being examined experimentally, Presently
this is being done by using a statistical technique known as the analysis
of covariance where previous educational or intelligence factors are
covariated out, usually in a linear manner. Other techniques such as
rotational techniques are designed to remove cross terms. These again
are based on a least squares interpretation of the data which attempts
to unscramble the interlocking relationships between the variables into
a manageable array. The method proposed in this paper is different, Previous
experiences as well as concurrent experiences are resolved in the traditional
manner by vector addition.

For example, suppose as a start in analyzing subject A with regards to
a particular educational goal, we used the classification scheme indicated
in 'l. This would require that we measure the subject in six dimensions.
We are not limited by any means to a six dimensional analysis and as many
as we chose could be subtracted or added to the original array. "0l has
six classifications, namely knowledge, comprehension, application, analysis,
synthesis and evaluation. We could very easily add to this array I.Q.
or any other dimension which we wished to include. For the purposes of
this example, we will not. Suppose subject A was doing some work which
was connected with a proposed experiment. We could call that concurrent
education and measure the effect on the educational goal in six dimensions.
Next, we give subject A some treatment. Again we measure him in six
dimensions in terms of our educational goal. Call these measurements
ul, u2 & u3 respectively. The resolution of subject A's learning is

(12) X=u1 + u 2 +u 3

The magnitude of his learning would be Na, where

6

(13) Na E ai 2 xi2

The a.11 5 could at first be based upon expert opinion. Ultimately they
could be experimentally derived.

Another feature of this method is that it enables us to resolve
not only the cognitive part of learning, but the affective as well.
In r~ there is a relation between the cognitive dimensions in t1.
If we change the ground field from the reals to the complex, the
affective part of learning could become the imaginary component of
learning. The definition for the resolution and magnitude of learning
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remain the same as given above. However, the possibility for showing
negative learning can be developed when using complex numbers as the
ground field instead of the real numbers.

The effect of scalar multiplication can be used to establish
standards for goals to attain in training programs or refresher courses.
Erasing bad training can be established by examining the inverses to
learning. Vector multiplication can be used to resolve different
educational goals where zero divisors represent conflicts that cancel
learning.

The method described so far need not be limited to the applications
suggested by T and r~l but can be used for multi-tiered learning such
as that suggested in r. Moreover, a skill such as learning how to fire
a main gun of a tank can be broken up into its skill components each of
which can be assigned a dimension. Resolution of learning can be obtained
by r12, and r131 can be used to predict main gun performance or corre-
lated with it. Or, the skills that are desired can be related to those
given in (11 and f~ with resolution of learning and its magnitude as
previously defined.

The purpose of this paper was to show that Ca had an application
in learning theory. Clearly, there are a multitude of applications of
Ca~ not only to learning theory but the physical and behavioral sciences
as well.
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AN ALGORITHM FOR HEAT TRANSFER
IN GUN BARRELS

John F. Polk
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Aberdeen Proving Ground, MD 21005

ABSTRACT. Experimental measurements indicate that steep temperature
gradients exist near the bore surface of gun barrels during operation.
These pose severe difficulties for obtaining the true surface temperatures
and for developing effective mathematical models of the heat transfer
process. Singular perturbation methods provide a natural means for
attacking the mathematics underlying such problems and can be used to
obtain asymptotic expansions for the bore surface temperature, valid for
small times. These expansions have been incorporated into a basic
algorithm which can be repeated as frequently as necessary to predict

physical model of the interior ballistics this procedure has resulted in
temperature predictions showing excellent overall agreement with measured
data.

1. INTRODUCTION. On the most elementary level the transient heat
transfer occurring in a gun barrel can be described by the following model.
The temperature e at a given axial station will be assumed to depend only
on the radial coordinate, R, and on time, T, which vary over the ranges

R 0 <R <R Iand 0O <T <T I

where

Ro inner bore radius

R, = exterior barrel radius

T =0 when the bullet passes the axial station

T = T Iis the maximum time of interest.

In order for the short time asymptotic methods which we shall use to be
valid it will be necessary to assume that

T R 2/k(11

where k =K/pc is the coefficient of thermal diffusivity,
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K = thermal conductivity

p = density

c = specific heat.

More comment will be made on this point shortly, however we should note
that longer term solutions can be constructed by repeating the basic
approximations over successive time intervals m T 1 < T < (m+l) T1 .

For convenience we shall henceforth use the non-dimensional form

U (R,T) = (0(R,T) - 0 )/(0MO - 0o)

to describe the temperature where

0 = ambient temperature0

0M = melting point for gun barrel steel.

We suppose that this function is known at time T = 0 in the form

U (R,O) = F (R) (1.2)

and that its subsequent rise is governed by the linear heat equation, in
cylindrical form

Uw = k [URR + 1R]. (1.3)

At the bore surface the heat transfer obeys the convective law

KO (T)-0
[U - K UR] (RT) = G (T) = 0-a 0 (1.4)ff R 0 6M -

where H is the heat transfer coefficient and Ogas (T) is the instantaneous
temperature of the propellant gas intie barrel. At the outer surface the
short term heat losses will be considered negligible so that the zero
flux condition

UR (RI T) = 0 0 < T < Tl  (1.5)

applies. The zero flux condition at R Ro can be obtained as a special
case of (1.4) by letting H 0.
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Clearly this model is a simple one since it is linear and implicitly
assumes that the gas dynamics and heat transfer to the barrel are
separable problems. It also assumes that H and G (T) are known whereas
the available experimental data concerning these quantities is very
sketchy. Nevertheless, an analysis of the problem, as formulated, is
relevant for several reasons: first, it provides a qualitative insight
into the relative importance of the various parameters; second, an under-
standing of the non-linear problem is only possible after a thorough
rendering of the linear case; third, more complicated problems can be
handled by quasi-linearization in which the equations are treaced locally
as linear in restricted sub-regions; finally, even with this simple model
we are able to obtain reasonable agreement with experimental data, in
some cases.

To reduce the problem even further and to obtain explicit solutions
we limit our consideration to low order polynomial forms for F (R) and
G (T). In this regard we shall let Vn (R,T), n = 0,1 and Wn (R,T)
n = 0,1,2 denote the five solutions of problem (1.2) - (1.5 having the
particular supplementary data indicated in Table 1.

Table 1

Problem Solution Initial Values Gas Temp.
F (R) G (T)

I V 0 1
0

2 V1  0 T/T 1

3 W 1 0
0

4 W1  (R-R0)/R°  0

5 W2  ((R-R )/R ) 2/2 0

Other functions of physical interest could be considered but this table
represents a minimal list of functions we should be able to treat. It
also appears to be adequate for application to the gun barrel problem.

II. ANALYSIS. As a first step let us non-dimensionalize the fore-
going model by introducing the independent variables

r = R/R°

t = kT/R
2

which vary over the ranges

1 r 4 r and 0 4 t <t 1
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where

r= R/R and tI = k T1/R2

The function U can now be written as

u (r,t) = U (r Ro, t R /k, = U (R,T)0

and problem (1.2) - (1.5) transforms into

1
ut U +- U (2.1)

rr

1 (r,o) = f (r) = F (r R ) (2.2)

fu - K-R-Ur](l't) = g (t) = G (t R /k) (2.3)
0

u (rl,t) = 0. (2.4)

Note that the coefficients in (2.1) are all of order unity while (1.1)

implies that

0 < t << 1 (2.5)

Thus the problem in this form is truly a short-time problem.

In this non-dimensional form problem (2.1) - (2.4) is suitable for
analysis using the DESS (Diffusion Equation Solution Sequence) method
which was introduced in a separate discussion1 ,2. This is a technique,
based on the assumption of small times, in which asymptotic expansions
are developed for the solution in those regions where singularities such
as steep gradients (boundary layers) are encountered. In the present
case such a phenomenon is observed near the bore surface and is caused
by the sudden rush of hot gasses over an initially cool surface. The
flux of heat to the barrel is so sudden that it cannot be diffused
uniformly outward but results in a thin, high-temperature region near the
bore surface R = R0 (r = 1). In the mathematical context this condition
arises when (1.1) is satisfied. For gun barrels we have the typical
values

R f1 cm
0

k f .1 cm 2/sec

and thus our analysis will apply when

T << 10 sec.
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For common gun systems this is many times greater than the time during

which convective heating of the barrel occurs.

In our previous discussion of the DESS method asymptotic expansions

for solutions of the equation

ut = a(x) u + b(x) u + c(x) u

were obtained in explicit form. However, only the Dirichlet type (function

value specified) of boundary condition was considered so that the expan-

sions obtained previously do not directly apply to the present case. On

the other hand the formal procedures used to derive those expansions can

be repeated for problem (2.1) - (2.4) to obtain a different, but still

explicit, expansion for its solution. Let us now see how this is done.

The basic procedure is to emphasize the local, short-term behavior

of u near r = I by introducing the stretched variables

a = (r-l)/E

T = t/C 
2

and a transformed or "inner" solution
2

O(G,T) = u(l + C G, 2 -r) = u(r,t)

where, for convenience we have introduced the notation

= 1 o

From (2.1) - (2.3) we can obtain the new equations

a =6 + ___ -

r CT l +- a U > o, T > 0 (2.6)

z(oo) = if(a) = f (I + C a) a > o (2.7)

Lh 1i(o,T) = (t) = g(e 2 
T) T > o (2.8)

where Lh here denotes the operator

a-U

Eh U 5 U uh

with h = H /''lKpc
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The boundary condition at R = R1 is ignored in this new system since it

now occurs at the coordinate

a = (r1 -1/C

which, for small values of c, is very remote. In its place we should
require that u(a,T) satisfy a growth condition as a - -. In the present
discussion, however, we are not concerned with the questions of uniqueness
and continuous dependence on the data but only wish to explain the
mechanics by which a formal expansion is obtained. The only justification
of our methods is accomplished a postoriori by comparing our computations
with experiment.

In connection with problems 1-5 we shall use the notation Vn(o,t) and
Wn (o,i) in place of the general solution i(o,T). The supplementary data
for these problems, obtained by transforming Table 1, is given in Table 2.

Table 2. Supplementary data for Problems 1-5 in
Stretched Variables

Problem Solution Initial Temp. Gas Temp.

f (o) i(T)

SVO(o, ) 0 1

2 V 1 (o,T) 0

3 W0 (o,T) 1 0

4 W1 (o, T) 1 0

2 -/
5 W,(, T) 7/2 0

Let us now suppose that U can hN r small > o in the
asymptotic form

U - FP i11 * . ....... (2.9)

The value of the exponent p follows froa -,e particular choice of the
supplementary data; from Table 2 we see

for problems I, 2, 3

p I for problem 4 (2.10)

2 Jor problem 5.
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Substituting (2.9) into (2.6), recalling the expansion

I - 1 - Ea + (Eo) 2  
(E) 3 +I + E- -+ '

and collecting by powers of e results in the following system

S (i =0

I (Ul = (0)a

u2) T (u2) = (Ul) - u0)a y

and, in general,

k
(Uk)T (U-k)0 0  jl L UkOj (2.11)

where L. is defined by

JJ

u a

The sequence {uk : k = 0,1,2......} therefore forms a DESS according to
the definition in References 1 and 2.

Specializing to the solutions of problems 1-5 let us use the notation
Vn, k and Wnk in place of the individual terms uk of (2.9); that is, we
seek the expansions

n (, ) [nO + V + 2 ..] (o,T) (2.12)

W n (aT) - n [-no + -
+  2 n2 + ... ] (ot). (2.13)

These satisfy the equations

0; k=o

(V nk) (V nk) k 2.

~j~l nk-jn nkoi= _(2.14)
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jO k=O

(11 nk)T - (Wnk) =; a k (2.15)

1J3 Wnk-J k=,2.

in the domain a > o, T > o. Supplementary data for these terms is
obtained by substituting from Table 2 into (2.12) and (2.13) and collect-
ing by powers of E. This yields

Vnk (o,o) = 0 k=0,1,2,... (2.16)

t n/n! k=0

1 0 k=1,2,3, ... (2.17)

and

a n /n! k=O

n,k (0,o) =

10 k=1,2,3 .... (2.18)

Lh Wn,k (o,T) = 0 k=0,1,2 .... (2.19)

The systems (2.14), (2.16) and (2.17) for Vn,k and (2.15), (2.18) and

(2.19) for Wn  can be explicitly solved in terms of certain special
functions whOiC have been investigated by the author in separate work.
In the next section we shall briefly review these functions and apply them
to the present problem.

II. SPECIAL FUNCTIONS. The special functions H, H*, Z and Z#

(y is any real number) were defined and investigated in References 3 and
4 which can be consulted for more detail. Their basic significance is
that they are solutions of the heat equation which satisfy special initial
and boundary conditions. The most basic of these are the functions H
which are defined for t > 0 by

H (xt) = rt) 2 .1 exp [- (x-s)2/4t]ds

when y > - 1 and recursively by
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II (xt) y+I (Xt)y ' 'ax yI (x t

when y < - 1. For t = 0 and a] Iy we define

0 x < 0
I1 (x,0) = h (x) = (3.1)

x)/y! x > 0

The functions H are next defined by
-Y

H* (x,t) -- H (- x,t)
,YY

and bave the initial values

H* (x,0) = h* (x) = h (-x). (3.1)*
Y Y Y

Along x = 0 these functions take on the values

H (o,t) H* (o,t) = Y/2(y/2)! (3.2)
Y Y

For integer values of y, y = n, the functions Ht and Ht* can be obtained in
'Y Y

explicit functional forms. For example

H_I (x,t) (47t)- I/ 2 exp [- x 2/4t]

H (x, t) = "1/2) erfc (- x/4¢rT)

H 1 (x,t) = X H0 + 2t H- 
(3.3)

H 2 (x,t) = [(i 2 + 2t) H0 + 2xt H_1]12

H3 (x,t) = [x3 + 6xt) H0 + 2 (x t '+ 4 t 2 ) H 1 ]/3!

H4 (x,t) = [(x4 + 12x2t + 12t 2 ) H0 + 2 ( *3t + lOXt 2 ) H-1 ]/4!

All of the functions'H and H* are infinitely differentiable with respect
Y Y

to both variables and satisfy the following relations
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- * H*

3x y Y-1 ax y y-l

-H =H i = H*at y y-2 at y y-2

The functions Z and Z* can now be defined as the transformations
Y Y

ZY (xt) = Th Hy (xt)

ZY (x't) = Th HYixt

where

Th [f(x,t)] = hj f(s,t) eh( x -s) ds.

This transformation is actually the inverse of the differential operation
1

Lh u- u u so that

Lh  Z " H

Lh Z = HY3 "Y

and consequently along x = 0 we have from (3.2)

Lb Z (o,t) = Lh Z# (0,t) = rt-y/2(y/2)1 (3.4)

The differentialiability of the functions H and H* carries over to
their transforms; we have Y Y

a = Z Z, = - Z(
Sz -I ax -(3.5)

a Z = Z a Z = Z#(3.6)
at y y-2 at Y -2

For our applications only the functions Z Y , not Z Y will be needed.

These can be shown to have the series representation
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Z# (x,t) = - (-h)k H (x, t) (3.7)
Y k=l Y+k

and thus from (3.1) and (3.2) we have

Z# (x,O) = 0 x > 0 (3.8)
Y

#  (o t) - -Y (-h Ft)k
k ((y+k)/2) t > 0 ; (3.9)

the latter series can be truncated for small values of h Ft. When y is
an integer we have the following explicit functional forms for Z#: for

Y = - I Y

Z#I (x,t) = (h/2) erfc ((x + 2ht )/4T) exp (hx + h 2t) (3.10a)

otherwise

(-h)-n Hk kx,L), n > 0

-n-i #n-

Zn (x,t) = (-h) - 1 Z#1  xt) (3.l0b)

I (-h) - H- k  (xt),n < -2
k=l

Along X = 0 we then have

Z# (o,t) = erfc (h/il) exp (h 2t) (3.11a)

n~

Z#(o,t) = (-h) -n -1 Z#  1~~ k+ k2!
n -1 2/Co(.t)) t(-h)-n-k/) n 0

-X (- (k/2)! , n -2
k• (3.11Ib)

For large values of hA we can combine (3.11) with the standard
asymptotic formula

erfc (z) exp (z2) .z 2z2  (2z 2 ) 2  (3z2) 3
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as z , to obtain

Z# (o,t) ~ (-h) -n (-hA) (3.12)
n 2 - (k/2)1

as h - -.

We can now return to the problems formulated at the end of Section II
and write explicit solutions for the terms Vn,k and Wn,k of expansions
(2.12) and (2.13). We have

V0,0 (a,r) = 2 z

0  ,T) # - 2 T Z#  (3.13)

V 2 z2# +a2 /)Z
0,2 (o,T) 2 Z1 0/2)

2VO,2O (0,T) 2 "z 2 +(02) #

V1(o,z) = 3 -Z2

zo= 
3 Z# - 2 Z

V (o,) = - 2 + (o2/2 + 4T) Z#  T2 Z#  (3.14)

WOS (0,T) = 1 - 2

W0,0 1 2Z0

W01 (0,T) = 2 T Z - Z1  (3.15)

WO (0,) a- 2/2) Z#  2 z #

0 -2

(a,r) =a (2/h) Z
#

1,0 0

W o,T) = - (2 r/h) Z + (1/h) Z - 2 Z (3.16)
1,1 - 1 2

, (0,T) = 2 x Z - 3 Z + (r2 /h) Z - aT + (a2 /2h) Z - (2/h) Z#1,2 1 3 -2 0 2
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w2, (,) = o2/2 + T - 2 Z#
2,0 2

W2 ,{) = ot + (2/h) Z + 2 T Z - 3 Z (3.17)

2,1 2 1 3

W2 2 (o,) = - T /2 + (3/h) Z# + (2 T - 02/2) Z#

# T2 Z#
- (2 T/h) Z# + T Z

1 0

where the functions Zn in the right hand expressions are to be evaluated
at o,t. Verification of these solutions can be accomplished by direct
substitution into the appropriate equations, using (3.4), (3.S), (3.6) and
(3.8).

By reversing the derivation in Section II we can express these func-
tions in terms of the original variables R and T. This yields

Vn (R,T) - (o,-r)n ~

[V + C Vnl + C2 Vn2 (aT)

and

Wn (RT) n no + C Wnl + C Wn2 (,r)

where

= /R

o = (R Ro)T 1

T = T/T1

The terms Vnk and Wnk are evaluated using the above list of functions with

the parameter h given by

h = H vrT 1 /Kpc

But the parameter T 1 may be considered as a dummy variable since it can be

replaced by any value satisfying (1.1). Thus we can replace T1 by T in

the above formulas to obtain the somewhat simpler forms

Vn (R,T) n [V + E Vnl + 2 Vn2] (o,1) (3.18)
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Wn (RT)-E [ " Wnl + E2 Wn2] (o,1) (3.19)

where now

c = Y€ V- R °0

a = (R-R )/V-T (3.20)

and h = H 'ITKpc

In particular, along the bore surface R = Ro we can approximate V and
Wn by n

Vn (R0 T) Vn (0,1)

Vno (0,1) + E Vnl (0,I) + 2 Vn2 (0,I) (3.21)

n -

C [Wn0 (0,I) + C Wnl (0,1) + C Wn2 (0,1)] (3.22)

Formulas (3.13) (3.17) can also be used to obtain approximations
for U (R,T) in the special case of zero flux at R = R0 by letting h - 0.
Note from (3.7) that

Z# (O,T) - 0
Y

and 1#
h zy (a,t) - H*+1 (o,T)

as h 0 0. Thus formulas (3.13) (3.17) take on the simplified forms

vnk (o,) = 0 for all n and k

00 (o,T) = I

*0 1 (,T) = 0 (3.15)'

'0 2 (ar) = 0
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WlO (0,T) = a + 2 t1

W ( , T) = - - 2 r H* f* (3.16)'
110 2

W12 (CfT) = f
2 

O T at + (a212) Hi - 2 If*
12 3

W2 0  (a,-) = (3-/2 + r

W (21 (,T) = or + 2 HI3  (3.17)
-2 2 * - 2 t

W22 (0,T) =-J 2 - T /2 + 3 H* - 2
T 11*

when the zero flux condition holds at R = R
0

IV. COMPUTATIONAL ALGORITHM. The preceeding expansions can be
incorporated into a numerical algorithm which effectively computes the
heat transfer over longer durations. To describe this in more detail let
us consider the original formulation, equations (1.2) - (1.5). We
suppose that a numerical mesh is constructed as indicated in Figure 1,
that values of U are known at the nodal points at time T = To , denoted
U0, U1, U2, UN, and that G0 = G (To) and G1 = G (T + AT) are known. The

! I 
I

values of U at the new time T = T 0- +AT will be denoted U0', U1j, ... UN

We first consider how to obtain U '. At time T the variation in U

near R = R can be approximated by a power series

R R a 2  /R-R 2

U (R,T 0)% a 0 + a 1 (-k)+( R )

where a = U (R ,T )

a = Ro UR (R ,To)

a2 =R 2 U (Ro ,o URR 0o

These coefficients can be determined from the knowledge of UO, U1 and GO

in conjunction with boundary condition (1.4); we have

a0 =U 0

a1 = (H R0/K) [U0 - 0o

a -2 R2 [U - - a AR]/AR
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where AR is the distance between the first two nodal points. We can
similarly approximate G(T) by

G(T) GO + (GI - G0)(T - T )/AT

If we were now to introduce a shifted time variable

T' =T- T
0

with 0 < T' < AT then the analysis of the last two sections would carry
over identically with T' in place of T and AT in place of TI, Using the
approximate formulas developed in Section III we would thus obtain

U0  =U (Ro, AT)

-[a 0 W0 + aI W1 + a2 W2 + G0 V0 + (G1 - G0) Vl] (Ro , AT)

or

U0' zt +  W +a W2 + GO V + (G - GO) V] (0,1) (4.1)

where Wn (0,I) and Vn (0,1) are evaluated from (3.21) and (3.22) using

= /k AT/R and h = H /A/Kpc

A similar discussion using the DESS method can be used to develop an
approximation for U at the exterior boundary R = R where the zero flux
condition (1.5)applies. (This is not really necessary for the gun barrel
problem since no thermal boundary layers are observed in this region.
However the derivations are still valid). This results in the following
approximate solution

UN U (R1, T + AT)
(4.2)

2 4 12
-U N + a F (1+ - C - +

where a = 2 R2 (U U)/AR2

c = NkAT/R1

and AR is the distance between the last two nodal points.

Once values of U0' and UNI have been determined the problem can be
regarded as one with Dirichlet boundary conditions and the solution
advanced at interior nodes using any of the standard explicit or implicit
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algorithms for parabolic differential equations. We have incorporated
this general approach into a computer code written in BASIC for the
Hewlett Packard 9845A desk top computer. Some of the resulting calcula-
tions will be given in the next section after the introduction of a simple
model of the propellant thermodynamics. However, as mentioned earlier,
the algorithm which we have just described can also be couple! with a
sophisticated interior ballistics code which provides update, values of
It and tigas (T) at each time step of the calculation.

V. A SIMPLE OVER-ALL MODEL. The coefficient of heat transfer H and
the propellant gas temperature agas (T) appearing in (1.4) are poorly

understood physical parameters which nay vary considerably during a single
firing cycle. Nevertheless we can consider the following simplistic
model.

e

F(R) = 0 R 0 R < R I(5.2)

G(T) = G0T > 0 (5.3)

where H 0is a constant and T edenotes the exposure time after which the

heat transfer becomes negligible and (1.4) can be replaced by the Lero
flux condition. The constant G 0 may be taken as

G 0 =(aflame o )( M o 0

where 0 faeis the adiabatic flame temperature for the propellant. The

most appropriate values for H 0and T eare not at all clear from currently

available physical theories. However we cam treat these as adjustable
parameters which can be chosen for best agreement with experimental data.
If this is done for the 37mm gun studied in Reference 5, for example, we
obtain

H 0 f .28 cal/sec (cm) 2 ,C

T Qs.018 sec.
e

(These values should be considered preliminary since the data was not
available in tabular form and best agreement was obtained by visual corn-
parison with the figures in Reference S. There is clearly some distortion
in the reproduction process and it is suspected that H 0should be somewhat
larger and Te smaller.) The resulting claculations using our numerical
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scheme are plotted in Figure 2; run time was approximately one minute.
The actual measured data is shown in Figure 2 and shows excellent agree-
ment. Quite similar agreement has been obtained for the 5.56mm and 20mm
guns also studied in Reference 5. This would seem to indicate both that
our simple model forms a reasonable first approximation to the actual
heat transfer process and that our numerical scheme is working properly.
It is the author's intention to pursue this matter in more detail in
future work so that greater confidence can be gained. For the moment
these comparisons are only qualitative.

To simplify things even more one can dispense with the numerical
scheme altogether when the exposure time satisfies

T - R2/k
e o

and approximate the temperature rise using only the single term Vol that
is

U (R,T) = G0 V0 (R,T)

G0 [V00 + C V0 1 + 2 V0 2 ] (o,l) (5.4)

where formulas (3.20) are used for c, a and h. In particular, along the
bore surface

U (ROST) G0 [0 (0,1) + C V0 1 (0,1) + C2 V02 (0,1)1

for 0 * T < T . To approximate U for T > T note that the variation ofe e

U in the R direction at time T = Te is approximated by

U (R,T) o ao+a1 ((R-Ro)/R o ) + 2((R-Ro)/Ro )2  (5.5)

where a, b and c are obtained by differentiation of (5.4) with respect to
R. Explicity we can show that

a 2z Z # +CZ# +C2 Z #2

0  12 Zo - 2 -1 + -1  21 (0,1)

a= Go [-(2/c) Z#+ 2 Z 2 - - Z #3] (0,1)
Z-1 Z2 -

a2  G0 1(2/c 2) Z# - (2/c) Z#+ (1/c) Z#+Z#+ Z0#] (0,1)

where F =€ /R
e o

Using (5.5) for initial values beginning at time T = Te, assuming a zero
flux condition we then have, for T > Te ,
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- '~ +H + -2U (Ro, T) a0 +a1  0 W0 11 El WI 2] (0,1)

2 
2  " 0 )( 5 . 6 ) )

+a 2 E [W20 + E W 21 + -22 (0,1)

where equations (3.16)' and (3.17)' are used to evaluatWnk and

= V T-T)/R 0

Unfortunately (5.6) breaks down quickly because of the inaccuracy in (5.5).

VI. SUMMARY AND CONCLUSIONS. We have used a small parameter analysis
to derive an algorithm which can be used to generate numerical solutions
for problems (1.2) - (1.S). This algorithm was then used in conjunction
with the simplified physical assumptions (5.1) and (5.3) to produce
temperature profiles quite similar to experimentally measured temperatures.

An overall predictive model for the likely temperature profiles in a
gun barrel is given by formulas (5.4) and (5.6). It involves two adjust-
able parameters Ito (average heat transfer coefficient) and T. (effective
duration of exposure to hot gasses). it is hoped that this model will
provide a useful tool for weaporn designers whi only reed a general
qualitative understanding of the gun barrel temperature response. By
building up a data base of typical values of Ito and 

T e for existing guns
and propellants it might be feasible to extrapolate to the expected
thermal behavior of proposed weapons systems.
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Figure 2. Calculated temperature/time profiles at several

distances from bore surface of 37mm gun barrel.
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Figure 3. Experimentally measured temperature/time curves from
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DYNAMICS OF IGNITION

A. K. Kapila
Department of Mathematical Sciences

Rensselaer Polytechnic Institute
Troy, New York 12181

ABSTRACT. Activation-energy asymptotics is employed to
determine the complete burning history, from ignition to
deflagration, of a premixed combustible in a spatially in-
homogeneous configuration. The sequence of events consists
of a benign induction period, followed by the rapid develop-
ment and growth of a hot spot. When the entire reactant
within the hot spot is consumed, the latter transforms into
a practically steady deflacrating wave travelling across the
vessel.

I. Introduction. Ignition and subsequent burning of a
premixed combustible in a confined space is a complex pro-
cess. Even for the simple case of a homogeneous, constant-
property gas mixture, the mathematical problem is a diffi-
cult one, primarily due to the strong couplina between
chemistry and gas dynamics. Matters are compounded still
further in any realistic situation, such as combustion in a
gun barrel.

In an attempt to develop appropriate mathematical tech-
niques, this paper takes a first step by treatinq an ex-
tremely idealized model, where the combustble is assumed
to have negligible thermal expansion. This assumption
removes gas dynamics from the scene, and reduces the probie.
to a purely reactive-diffusive one. Large activation energy
asymptotics is used to trace the complete burning history
of the system. The analysis is the spatially varying
counterpart of Kassoy's treatment [1] of the "lumped" version
of the problem. It is envisaged that the notions developed
here can be extended to include gas-dynamic effects.

A more detailed treatment of this presentation can be
found in [2].

II. Formulation. Let a cold combustible mixture, at
initially uniform temperature and reactant concentration, be
confined to the region between the planes x = ±1. Let the
boundaries of the reaion be maintained at the initial levels
of temperature and concentration for t>O. (Thus, heat,
fresh mixture and products of combustion are allowed to
cross the boundaries.) Taking the Lewis number to be unity
and invoking symmetry about x = 0, the mathematical problem
to be considered is
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z = (l+p-y)/P, (1)

Yt = Yxx + {D/(Py)}(l+P-y) exp(y-y/y), 0<x<l, t>0, (2)

Yx( t) = 0, y(lt) = 1, (3)

y(x,0) 1. (4)

This dimensionless system describes a single, one-step
Arrhenius reaction (Fuel + Oxidant - Product). Here, y is
the temperature and z the concentration of a reactant (say,
fuel), while P is the chemical heat release,y the acti-
vation energy and D the Damkohler number. It is assumed
that

D > 0.878,

which assures that the system is potentially explosive [3].
Henceforth, we shall treat eqns. (2-4) for y; z is then
given by (1). The object is to determine how the solution
evolves in time. The analysis will be based on the asymp-
totic limit y -.

III. Induction Stage. Equation (2) and the initial
condition (4) suggest that in the beginning, y - 0 =(
Therefore we employ the expansion

-i
y 1 + J Yl + " (5)

which, to leading order, yields the reduced problem

Yl

Yl = Yl + De , 0<x<l, t>0,t xx(6

Yl (0,t) = Yl(l,t) = Yl(x,0) = 0
x

This problem was solved numerically and a typical solution
is displayed in Fig. 1. Initially the solution develops
gradually, but then the temperature near x=0 begins to rise
rapidly, while changes are more leisurely elsewhere.
Eventually, at a definite time t-(D), yl(0,t) becomes un-

bounded. It is found that t- falls off with increasing D,
i.e. higher Damkohler numbers cause the system to explode
sooner.

The singularity at x=0, as t-t-, can be examined analyti-
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cally by developing a boundary-layer expansion in variables

T and r, which are defined by

= t - t, n X//T.

These reduce the differential equation in (6) to

YlTln - (i/2 )nyln + ylT + exp(yl) = 0

where y is now a function of n and T. In the limit T-0, n

fixed, this equation describes a boundary layer O(/T) thick.
In this layer yl is seen to have the expansion

yI(n,) = -9n(Dr) + f 0 (n) + 0(r), T-0, (7)

where f0 is found to satisfy

f ' - (1/2) f; + exp(f0 ) - 1 = 0, O<n<-,

f;(0) = 0, f0 = -2 knn + A0 (D) + o(1) as n --.

The left boundary condition on f0 is due to symmetry, and the

right boundary condition comes from matching with the numeri-
cal solution outside the boundary layer. The problem for f0

can be solved numerically, and yields a monotonically de-
creasing function.

IV. Explosion Stage. As T-0 the boundary layer solution
(7) grows logarithmically, eventually causing the induction-
period solution (5) to break down. Further development
occurs on an exponentially rapid time scale a, defined by

D-r = exp(-ya), a>0 and 0(1).

In terms of the boundary-layer variablesiUand a, the full
differential equation (2) reduces to

Y 'j = YYi - (n/2)yn + -1 (l+0-y)expjy(l-a-y-l) ].

Its solution can be shown to have the expansion

y 1(o-I + y-l (1-a)- 2 [f0 (n)-9,n{(l-a) 2
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+tn ] + ... (8)

The above expansion justifies the term explosion for this
stage, because it shows that the solution undergoes an 0(l)
change during a period of utmost brevity in the original
time variable t. However, this change is confined to an
ultra-thin boundary layer at x=0, outside which the system
remains essentially stationary at t=t-. In other words the
outer region, governed by the diffusion time t, is incapable
of responding to the fast time a.

The growth of the hot spot (boundary layer) lasts until
O=B/(I+8). Then, the second term of (8) becomes singular
and in the boundary layer, y approaches its maximum value
I+$, indicating that the reactant is completely exhausted
(see (1)). The hot spot now transforms into a thin zone of
reaction which begins to move into the interior of the
region.

V. Propagation Stage. The moving reaction zone (i.e.
flame or deflagration wave) is surrounded by a slightly
thicker "envelope" which, in turn, separates a burnt region
behind the flame from a cold region ahead of the flame (see
Fig. 2). The portion of the envelope ahead of the reaction
zone is a preheat region, where inert heating brings the
cold mixture upto the flame temperature 1+ .

It is convenient to shift to a coordinate system in which
the flame is stationary, i.e. we let

x = x0 (t) + (6/6)C

where x0 is the flame location (considered to be an O(i)

quantity), C is the spatial coordinate in the envelope and
E, 6 are small parameters defined by

6 = (By/D) 1 /2exp[- y/(2+2B) 1, (9)

E = (1+B) 2/Y; 6/6 << 1. (10)

With t scaled via

t = t- + (6/e)s,

the flame speed is found to be

dx 0/dt (E/6)dx0/ds = (E/6)U(s), say,
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where U is taken to be 0(1). Thus the flame travels across
the region at an exponentially rapid rate. In the C,s
variables, the full equation (2) transforms into

(6/E)y s = y + Uy + s 2(l+6-y)exp[Y/(l+B)-y/y],

To leading order, this equation is steady. It can be shown
that the solutions in the various regions of Fig. 2 are given
by the following expressions:

Burnt region (O<x<x 0 ): y = 1+8; (11)

Envelope: y = 1+8 for C<O, y = A(s)+[l+ -A(s)]exp[-U ]

for C>O; (12)
-i

Cold region (x0<x<l): y = i+y Yl (x,t)+... . (13)

Here, A(s) and U(s) are still to be determined. We note from
(13) that in the cold region ahead of the flame, the solution
is still frozen at its value at the end of the induction
period. Also, (12) shows that the two solutions in the
envelope have unequal slopes at C=O. This discontinuity is
smoothed out by the classical Bush-Fendell flame sheet [4],
of thickness 6, located at 4=0.

Matching between the various spatial regimes ultimately
leads to

-i
A(s) = l+1 Yl(X0,to)+.

and the expression for the scaled flame speed

U(s)= /2/[I+8-A(s)] = /2/+-O(Y- 1).

Thus the flame speed is essentially constant, and has pre-
cisely the same value that it would have in an unconfined
plane geometry

V . Transition and Relaxation Stages. The propagation-
stage analysis assumes that the flame is away from both x=0
and x=l; it breaks down when the flame approaches either of
these locations. When x is within an 0(S) distance of x=O,
the boundary condition ap x-O intrudes into the flame zone.
The flame structure then is no longer of the steady Bush-
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Fendell variety; rather, the balance in the flame is unsteady-
diffusive-reactive. The interested reader can find the
details of this transition stage in 12]. Suffice it to say
that the corresponding problem can only be solved numeri-
cally, and that the solution describes the manner in which
the hot spot, generated during the explosion stage, trans-
forms into a moving reaction front.

The propagation stage also becomes invalid when the flame
has moved too far to the right, because the boundary x=l
then enters the preheat zone. Once again we omit the de-
tails except to state that the preheat zone now becomes time-
dependent (while the flame is still steady), and causes the
reaction zone to come to rest. This relaxation occurs at a
time scale that is small compared to the propagation time s.
The ultimate location of the flame is given by

x 0 = 1 - (6/E) /V2

where 6 and c are the same as before. The reason for the
existence of the steady flame is the boundary condition

y(lt) = z(l,t) = 1, t>O

which provides for a continuous supply of cold, fresh re-
actant at the walls of the vessel. No-flux boundary condi-
tions would lead to an ultimately fully-burnt state.

VII. Final Remarks. Through large activation-energy

asymptotics, the analysis presented above succeeds in
describing the complete combustion history of a confined
mixture, from an initial cold state to a final deflagrating
state. In partcular, the time scale of each stage of
evolution is identified and its structure determined. It is
envisaged that investigations of fluid-dynamical effects in
the fully-coupled problem of confined gaseous combustion
should be feasible in this framework.
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PREMIXED CYLINDRICAL FLAMES*

G.S.S. Ludford
Center for Applied Mathematics

Cornell University, Ithaca NY 14853

ABSTRACT. Although it has not been studied to the same extent as the plane

premixed flame [cf. Ludford, J. Mecanique 16 (1977), 553], the cylindrical flame

is almost as easy to produce. The reacting mixture is supplied through the

surface of a circular cylinder and is induced to flow radially by means of

sufficiently close end plates. The flame then forms a coaxial cylinder and can

be observed through the end plates, which should be transparent and good thermal

insulators.

Analytically the cylindrical flame stands between the plane and spherical

flames. The structure of its reaction zone is the same as that of a plane

flame but, like the spherical flame, it does not exhibit the cold-boundary

difficulty (loc. cit.) since the mixture must be introduced at a finite radius.

The present paper will show, on the basis of activation-energy asymptotics,

how cylindrical geometry modifies a premixed flame. For simplicity we shall

consider a single reactant (monopropellant), which decomposes in one step

irreversibly.

I. INTRODr Tum+

Although it has not been studied to the same extent as the plane premixed

flame, the cylindrical flame is in principle almost as easy to produce. The

reacting mixture is supplied through the surface of a circular cylinder and is

induced to flow radially by means of sufficiently close end plates. The flame

then forms a coaxial cylinder and can be observed through the end plates, which

should be transparent and good thermal insulators.

Analytically the cylindrical flame stands between the plane and spherical

flames. The structure of its reaction zone is the same as that of the plane

flame, with temperature constant beyond; so that there is no curvature effect

as for the spherical flame (cf. Ludford, Yannitell & Buckmaster 1976). On the

other hand, like the spherical flame it does not exhibit the cold-boundary

difficulty: the mixture must be introduced at a finite radius, which can

however be so small that a line source is effectively formed. Ironically

enough, in their attempt to treat curved flames Spalding & Jain (1959) use

*This work was supported by the U.S. Army Research Office under Contract

No. DAAG29-79-C-0121
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plane-flame analysis on the spherical flame, where it is never valid, and

neglect the cylindrical flame, where it is always valid.

The object of the present paper is to show how cylindrical geometry modifies

a prenixed flame. For simplicity we shall consider a simple reactant (mono-

propellant), which decomposes in one step irreversibly.

II. THE BASIC CYLINDRICAL FLAME.

The notation will be that used by Ludford (1977a), who gives a derivation

of the equations with which we have to deal. Non-dimensionalization is based

on the radius, a, of the supply cylinder. If v is the radial velocity, the

equation of continuity admits rpv being constant. When M is the mass flux

at the supply cylinder we may therefore write

(I) rov = M or pv = M/r,

the latter giving the mass flux at every other radius r. Once the temperature

T has been determined, the density p = l/T and v = MT/r follow immediately,

while variations in pressure about its constant level can be calculated from

the momentum equation of the mixture. There remain then the energy and reactant

species equations

(2) f(Y) = -X(T) = DY exp(-e/T),

where Y is the mass fraction of reactant and D is the Damkohler number (which

may be taken constant). Here

1d d M d
(3) r-) - rd-

in the cylindrical geometry; for simplicity we have assumed unit Lewis number and

a first-order decomposition. As is now common, the equations will be solved in

the limit where the activation energy e tends to infinity.

F1rst note that the Shvab-Zeldovich variable Y = Y + T satisfies

(4) Z(Y) = 0 for 1< r< .

Since the only solutions which remain bounded at infinity are cotstants, we have

(5)Y + T = T = Ys + Ts

for a reaction that goes to completion, where s denotes conditions at the

supply r = 1. The fact that the Y, T-relation is identical to that for plane
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flames (Ludford 1977b) is responsible for the structures of the reaction zones

being the same.

The asymptotic analysis of the equations (2) proceeds as for a plane flame.

The temperature beyond the flame sheet must be constant, i.e.

(6) Y = 0, T = T for r > r*,

while up to the flame sheet the reaction is frozen, i.e. .,(Y) =X(T) = 0

so that

Y = Y + L(l - r M), T = T5 + L(rM - 1) for 1 < r < r*.

Here L = MIT;, with T' the temperature gradient at the supply, is the heat

conducted back into the supply per unit mass of mixture. These two pairs of

formulas give the same values at

(8) r. - [1 + (T T )/L]I/M

as expected, the stand-off distance for a plane flame is recovered as the radius

a of the supply cylinder tends to infinity when due attention is paid to a mass-

flux unit proportional to 1/a. Consistency requires r* > 1, i.e.

(9) L > 0,

which means the supply must be a conductive heat sink.

As usual the interior of the flame is investigated with the expansions

(10) Y = 6y(E) + o(6), T = T + 6t(&) + o(6)

where

(11) = (r - r,)/6 and 6 = T/e.

The structure is thereby found to satisfy the equation

2 2 . t
(12) d t/d =-b y e , where y + t =0,

and the boundary conditions

(13) t = Is E/r. + o(i) as . - , t = o(1) as E- +0,

which come from matching with the expressions (6) and (7) outside. Here

- 2-e/T,
(14) -6e- D while Js = Y - Y/M

is the reactant flux fraction Y - rY'/M at the supply (usually 1).

Exactly the same problem is obtained for a plane flame except that
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the coefficient MJs/r* in the condition (13a) is replaced by MJ* (which

equals MJs there). Noting that here J. = Js/r* (because the total reactant

flux 2vrMJ is conserved for frozen chemistry) shows that the cylindrical

reaction zone is locally plane. For spherical flames the y,t-relation (12b),

which derives from the Y,T-relation (5), is changed so that the reaction zone

is quite different from its plane counterpart.

From the solution of the corresponding plane-flame problem we deduce

(15) D = (Js/r*) 2M122

so that

2 2 e/T 42

(16) D = (J s e e /2T r,)M2,

which is the required M,D-relation. For fixed ML, i.e. heat conducted back

to the supply, it has the general shape of the parabola obtained for the plane

flame, because the factor

2 -/(17) i/r = ri + (T - T)n - /

varies only between exp[-2(T - Ts)/ML] and 1 as M increases from 0 to

The parabola is useful for determining the speed (i.e.M) with which a plane flame

propagates into fresh mixture at given pressure (i.e. D), but there is no

equivalent use here. On the other hand, for the set-up envisaged in the opening

paragraph both M and D are prescribed (along with Ts and J s) , and the

formula determines the final temperature T (note L = Js + Ts - T ).

III. NEAR-SURFACE AND SURFACE FLAMES. REMOTE FLAMES.

For the above solution to be valid the parameter values must be such that

to, as given by the formula (8), lies between 1 and w. As for the plane f-ame

(Ludford 1977b) three limiting cases arise, two of which are essentinlly the same

as there. The third leads to an interesting new phenomenon.

When M and D become large, with all other parameters held fixed, the

flame approaches the surface. An intense convective-diffusive zone of thick-

ness O(Ml) forms near the surface, bounded by a reaction zone whose thickness

is O(e-lM-l).

By contrast a true surface flame can be produced for any M by adjusting

the pressure so as to make T o- Ts . Similarly remote flames can be produced
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by making T 4 J + T (i.e. L - 0). At both ex-remes the preceding analysis

becomes invalid: either the boundary intrudes into the reaction zone and there

is no frozen region between them or the 4 sothermal limit of (7) is not uniformly

valid in the unbounded frozen region. In either case the asymptotics must be

reworked.

The analysis of the surface flame is identical to that for the plane case

(Ludford 1977b) provided x is changed to r-l. We conclude that D will

change from J2M2 /2, the value (15) when r, = 1, to w as the temperatureS

difference (T -T )/6 , measured on the 6-scale, decreases from Cs to 0.

By contrast, the remote flame cannot be treated as in the plane case since

the asymptotic analysis breaks down earlier, in fact as soon as L becomes 0 (6).

The difference lies in the reactant flux M Js/r* at the flame, which now tends

to zero like 6I /M as r, - = ; the condition (13a) loses its effectiveness

unless a different scale is used for the structure. Setting

(18) r = r* + 8 -I1M

gives the new condition

(19) t = MJs(/JS)l/M + o(l) as 4 --.

where L = 2.; the corresponding change

(20) D 6 2(1-1/M) e- /TD

must also be made to keep the structure equation balanced.

'e therefore end with the same problem, except that r, is replaced by

(Js/0i/M ; so that D is given by the formula (15) with the same replacement and

(21) D = J2(l-l/M) e2(1-1/M) e eT-021M2T4(1-1/M)

2(l )e~/T
Thus D varies from 0 to - on the scale e -1/M) e as I increases

from 0 to c, the upper end of the range corresponding to 0 on the previous
scale e2 ee /T .

The most interesting feature is the spreading of the zone in which there is

chemical activity, as M decreases. The transformation (18) implies that its
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thickness is 0(81/!), so that for M < 1 it is no longer a sheet; indeed

for 14 < 1 it has infinite extent [remember r. = 0(6 I /M ) is larger still].

Such a phenomenon should be easily observable.

IV. C1NCLUDING REMAPY.

We have seen that, except when remote, the cylindrical flame is locally

plane, unlike the spherical flame. These results stem from the diffusion-

convection cperator

r T % ) - MD- r rr

r

governing the reactionless field behind the flame. Here a = 0 (plane, when

r = x), 1 (cylindrical) or 2 (spherical) and

(23) 0 (T) = 0

has the general solution

I BA B (a= 0),

(24) T = + Br (a ),

A+ B e-M/r(a 2)

in the three cases. Boundedness of T makes B = 0 in the first two cases but

not in the third, where T becomes an assignable parameter in addition to any

others. It is this difference between the convection-diffusion process in plane

and cylindrical geometries on the one hand and spherical geometry on the other

which accounts for the similarities and differences of the corresponding flames.
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ABSTRACT. This problem arose from an attempt to get a better understanding of

the thermoelastic stress distribution in gun barrels during rapid fire due to the

impact of hot propellant gases on the interior of the barrel. It is formulated as

a coupled dynamic thermoelastic problem. The coupling between the thermal and

elastic effects cannot be ignored due to the high rate of pressure and thermal in-

puts at the boundary. The mathematical model consists of a pair of partial dif-

ferential equations for the stress and temperature distribution which is solved by

a perturbation method. Solutions are discussed for particular cases.

I. INTRODUCTION. When a gun is under rapid fire, the hot propellant gases

that build up in the barrel supply the boundary conditions of unsteady cyclic pres-

sure and heat flux at the inner wall. The "radiation" boundary condition of heat

flux (in the sense of Carslaw and Jaeger(l)P.18) along with the gas pressure pro-

duces a complex thermal stress field in the barrel. This field depends on the

boundary and initial conditions (assumed homogeneous), the equations of motion, the

coupled energy equations (which couples thermal and mechanical energy), and the

Duhamel-Neumann constitutive equations. The coupling effect in the energy equation

cannot be ignored due to the highly energetic and cyclic nature of the boundary

conditions. In the usual thermal stress problems the rate of deformation is slow

such that the thermal energy predominates the energy balance equation. As a conse-

quence, the energy balance equation is just the thermal conduction equation from

which the temperature distribution can be determined. This temperature distribu-

tion can then be introduced in the conservation equation of momentum as a body

force derivable from a potential. Thus, the problem of solving the stress distri-

bution can be treated independently without having to interact with the energy

balance equation. This is the uncoupled case.

In this paper a general formulation of the coupled thermoelastic problem is

given in terms of scalar and vector potentials which satisfy wave equations. The

wave equation for the scalar potential is non-homogeneous-the non-homogeneous term
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depending on the temperature. The problem is specialized to a cross section of a

gun barrel with appropriate boundary conditions. It is then further specialized,

for simplicity in illustrating the method, to a finite one-dimensional slab. Two

equivalent formulations are given: (1) a fourth order p.d.e. for the stress which

has both wave-like and diffusion-like properties; (2) a pair of second order

p.d.e.'s for the temperature and stress. This is put in dimensionless form with

appropriate boundary conditions and solved by a perturbation method wherein the

temperature and stress are expanded in power series with respect to a dimensionless

perturbation parameter. The uncoupled temperature distribution is solved for by

constructing the appropriate Green's function using the method of weak solutions.

From this we obtain the uncoupled temperature distribution under repeated heating.

Next, coupled thermal stress fields are obtained both for the case of a unit step

function in stress and unit gas temperature. The first case illustrates multiple

reflecting waves.

II. MATHEMATICAL MODEL. We present a mathematical formulation of the struc-

ture of a coupled linearized unsteady thermoelastic stress field. Consider a three

dimensional region R bounded by a surface S on which are prescribed surface trac-

tions and a linear combination of temperatdre and temperature gradient (called thk

radiation boundary condition). The surface tractions are prescribed functions of

time t. The radiation boundary condition is given in the form -KgradT = -h (T-T0 ),

where T is the temperature in R in the neighborhood of S (to be solved for as a

function of the particle coordinates given by the vector x(xl,x 2,x3 ) and t, K is

the thermal conductivity, h-the heat transfer coefficient with respect to the

particular surface environment, T -the temperature of the gas external to S-is ag
prescribed -unction of t; K and h are assumed constant. For a gun tube S consists

of the outer and inner walls of the tube. On the outer wall T is assumed to beg
tile ambient temperature; on the inner wall T (the propellant gas temperature) is ag
;r-Pscri>.?d function of t given from interior ballistic considerations. Also for

iun tube, the surface tractions reduce to the t varying prescribed pressure on

Wall (given from the solution of the interior ballistic problem for the

... ' the propellant gas). The outer wall is considered to be stress free.

i differential element of material in the interior of R. This is

, le of the medium. Its position at time t is given by x. The con-

-1I the equations of motion, the energy balance equation, and the

,.,r in. which hold for a material particle.

(,ion in vector form is
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p u + (X+p) grad div u + F -y grad T (1

where u (ul, u2, u3 ) is the particle displacement vector, T-the temperature, F-tne

body force vector, (p,X) the Lame constants, V2-the Laplacian in three dimensions,

and y is a constant given by

y = (3X + 2p)a

where a is the coefficient of thermal expansion. The last term on the left hand

side of Eq. (1) represents the force per unit volume due to the temperature

gradient in the medium. In an uncoupled problem the temperature field is pre-

scribed in the medium and the energy equation given below does not directly involve

mechanical energy. In a coupled problem, the energy equation involves mechanical

energy represented by the time rate of change of dilatation and the temperature

field cannot be prescribed but must be solved for along with the stress and strain

fields.

The coupled energy equation is

V2 T -r-1 Tt-n div ut = -K- Q (2)

wnere the constant q is given by

pcK

K is the thermal diffusivity, c-the heat capacity, Q-the heat source. Tne last

term on the left hand side is proportional to the time rate of change of dilation.

since div ut = 6, where the dilation e is given by e = uij i (the tensor summation

convention is used). This term represents the coupling of mechanical energy. I -

a = 0 then P = 0 and Eq. (2) reduces to the unsteady Fourier heat transfer equation

with a heat source.

The Duhamel-Neumann constitutive equations for an isotropic material are

CU = 6ijxe + 2ui, j - y6ijT i,j = 1,2,3 (3)

where c. is the ijth component of th; stress tensor, 6ij the Kronecker delta

(6 = { iJ), and ui  ax The last term of tne right hand side of Eq. (3)

represents the linearized contribution of the temperature to the stress field.

Note that the temperature only affects the principle stresses. The shear stresses

are not affected by temperature. This derives from the assumption that the temper-

ature field only changes the volume of the material particle.

*Inrouhout this paper subscriots indicate partial differentiation witn respect tc
the subscrip.-
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We may now formulate the general thermoelastic problem: Given the thermal

and elastic properties of the material (the constants K, K, p, c, X, V), the appro-

priate boundary conditions on S, the initial conditions on T, u, Rt, and the

definition of the linearized strain i = 2 ( ), solve the above conserva-

tion equations for the stress and temperature in R.

SCALAR AND VECTOR POTENTIALS

The general problem formulated above is difficult to solve. Under certain con-

ditions a simplification is obtained if a scalar potential 4 and a vector potential

i are introduced according to the following definition: We decompose u into the

sum of the gradient of a scalar and the curl of a vector.

Thus,

u = grad p + Vxj (4)

Inserting Eq. (4) into Eqs. (1) and (2) (for the case F= Q = 0) gives the follow-

ing:

l 1 = mT (5)

! = 0 (6)

where
= 2 -

2  2  - 1,2, 2 A + 2p 2
X i+ 21, c = , c (7)

1-1 is the longitudinal wave operatior, 5 2-the shear wave operator, cl-the velocity

of a longitudinal wave, c2-the velocity of a shear wave. Eq. (5) is the wave

equation for * coupled with T and represents longitudinal waves in . Eq. (6)

represents shear wave in P independent of T. These are rotational waves. This is

consistent with the Duhamel-Neumann relationships which assume T only affects

volume change and does not produce shear. These wave equations along with Eq.s (4)

and (2) allow us to obtain the , k and T fields. The stress tensor can then be

calculated from Eq. (3). The appropriate initial and boundary conditions must be

used.

GUN BARREL

We now apply the above theory to a typical gun barrel. Consider a cross

section of the barrel. The region R (the barrel wall) is represented by the annu-

ius bounded by the inner radius rl, and outer radius r2. The boundary conditions

are r =r , -KTr = -h (T-T (t)), a = p(t), r = r2, -KT = h2 (T - TO), 0rr = 0
rrrr, 1 g rr29 r 2 0 r
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a is the principal stress in the radial direction, T -the temperature of the pro-rr g
pellant gas in the interior of the barrel and p is the pressure on the inner wall

due to the propellant gas. T and p are prescribed functions of time, to be deter-g
mined from interior ballistic considerations. This requires a study of the heat

transfer of the hot propellant gas by convection through the turbulent boundary

layer at the inner wall.

ONE-DIMENSIONAL CASE

For simplicity we neglect the curvature of the barrel and replace the annulus

by a one-dimensional finite slab. The wall of the barrel is thus represented by

the region R: 0 < x < k. 0 is the position of the inner wall, k-the outer wall.

X is the wall thickness. The equations of motion reduce to a single equation:

ax = Putt (8)

where a is the one-dimensional stress and u-the displacement. All dependent

variables are functions of (x, t). Let e be the linearized one-dimensional strain.

Then e = ux so that Eq. (8), after differentiation with respect to x, becomes

a = pett (9)

The coupled energy equation becomes

T xx - K t = et (10)

The Duhamel-Neumann constitutive equation is

a = Ee - yT (11)

where E is the Young's modulus of the material. E = pc'

Eqs. (9), (10), (11) are equivalent to the following coupled system of second

order partial differential equations for T and a:

L1T = cat  (12)

010 - yTtt (13)

where

L a2 -1 )-1L1 ---- K (1 a)a - '=9_ , c1= _ , a = ynvc
1 a t pC1

2  c 2

L1 is the modified linear unsteady heat transfer operator. Operating on Eq. (13)

by LI and using Eq. (12) to eliminate T gives the following fourth order p.d.e.

for a:
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L1OaI Yflattt

Written in extended form Eq. (14) becomes

K (Cc a - ) - (C 2a - a ) 0l xx tt xx 2 xx tt t
where 2 = 2 )2To a 2

c2  c [l (3X + 2--] (14)

The boundary conditions are as follows:

x = 0 a(O,t) = f(t), Tx(O,t)- 11T(O,t) g(t) (15a)

x = I a(l,t) = 0, Tx(l,t)+0 2T(l,t) = 0 (15b)

where h i h

1 :--,2 -K f(t) = -p(t), g(t) : 1Tg(t)

One formulation of the problem of getting the thermoelastic stress distribution in
the finite slab is to solve Eqs. (12) and (13) for T and a subject to the boundary

conditions given by Eqs. (15-a,b) and homogeneous initial conditions on T, a, at-
Another formulation is to solve the fourth order p.d.e. Eq. (14) for a and manipu-
late Eq. (11) and the boundary conditions to get the appropriate boundary conditions
on a. However, instead of using these approaches we take a different tack. Making
use of the weak coupling of the mechanical term net in the energy equation, we
develop a perturbation method which involves expansions of a and T in powers of a
small dimensionless perturbation parameter c which describes the effect of this
coupling. The reason for this approach is to attempt to determine the conditions

for which we have a coupled thermoelastic stress field. This method will be des-
cribed below. In order to set the scene we recast the problem in dimensionless

variables.

DIMENSIONLESS VARIABLES

We define dimensionless x, t, T, a, a by the corresponding barred quantities
as follows:

X- =T ,a =, :T (16)

where T is the initial or reference temperature. We also define the dimensionless

parameters c, r and the time tM, tT by
r=K tM tM = 9, tT _ (17)

rCl T M cC Tl (

t M, the "mechanical time," is the time for an elastic stress wave to travel a
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distance Z with a velocity cI. tT, the "thermal time," is the time for a tempera-

ture pulse to decay to e 1 of its original value.

Inserting Eqs. (16) and (17) into Eqs. (12) and (13) the coupled second order

p.d.e.'s for T and a become in dimensionless form (omitting the bars)

r2T xx-( + alE 2 )Tt = a2 at (18)

r2 xx-att = a3ETtt (19)

a1 = (3A+2p) 2/T0pc(A+2p)r
2, a2 = 3X+2/pcTor, a3 = 3X+2p/(X+2p)r

The initial conditions are

t = 0, G(x,O) = 7t(x,O) = T(x,O) = Tt(x,0) = 0 (20)

The boundary conditions given by Eqs. (15-2,b) are put in dimensionless form by

using Eq. (16). They have the same form except a i is replaced by ZBi, i = 1,2,
p~t) i8lTg(t)

f(t) by E and g(t) by T
0

Concerning the smallness of the parameters r and e: For a given Z and

c1r1-O as K-0O so that when r=O with a loss in boundary conditions we have a singular

perturbation. However, if r>O and E=O, we do not have a singular perturbation,

since this means c=O and the system becomes uncoupled with no loss in boundary con-

ditions.

PERTURBATION METHOD

We apply the following perturbation technique to the system given by Eqs. (18),

(19) and the boundary and initial conditions: We expand a and T in power series in

the perturbation parameter F. Thus

a(x,t) : an(x,t)En, T(x,t) I Tn(xt)En (21)
n=O n=O

on(x t) and Tn(x,t) are the nth order expansion parameters for a(x,t) and T(x,t)

and are to be solved for as functions of dimensionless (x,t). The series expansions

given by Eq. (21) are assumed to be convergentfor small E. For c small enough only

the first few expansion coefficients are sufficient to give a good approximation to

the solution. For £=O we have o(x,t) = o°(x,t) and T(x,t) = T°(x,t) which repre-

sents the uncoupled problem. Inserting Eq. (21) into Eqs. (18), (19) and the

dimensionless form of (15-a,b) we get the following iterative coupled system of

p.d.e.'s for the expansion coefficients Tn(xt), on(x,t) with the appropriate

boundary conditions:
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2 n n n-2 n-i
r2Tnx  Tt  alT t  + a2, t  , 0 <x < 1 (22)xx t I t 2

2  n n-i

raxx - Ott a3Ttt

Tn . 0n = 0 n = -1, -2 .......

The boundary conditions are

x = 0 Tx(O,t)-aiT°(O,t) = g(t), ao(O,t) = f(t)

Tn(O,t)-( 1Tn(O,t) = O, an(o,t) = 0, n = 1,2,... (22a)

x = I Tn(l,t)+a2 Tn(l,t) = 0, ,n(l,t) = 0, n = 0,1,2,... (22b)

The initial conditions are homogeneous. -qs. (22) and (22-a,b) represent a coupled

set of second order p.d.e.'s for the set Tn(x.t), an(x,t) that is iterative in the
Tn on- n-i n -sense that the solution fur T depends on T and a and a depends on Tn-l

UNCOUPLED SYSTEM

Setting n=O (the zeroth order perturbation) in Eqs. (22) and (22-a,b) gives

the following boundary value problems for To and o:

rTO - To = 0, 0 < x < 1 (23)
xx t

x = 0, Tx(0,t)-BIT°(O,t) = g(t) (23a)

x = 1, Tx(lt)+a2T°(l,t) = 0 (23b)

t = 0, T(x,O) = 0 0 <x < 1 (23c)
r2 0 o = 0 o < x < 1 0 < t (24)

Oxx-tt

x=O, o°(O,t) = f(t); x=l, ao(lt) = 0 (24a,b)

t=O, a(x,O) = 0, at(x,O) = 0 (24c)

The solution of Eqs. (23) and (24) yields the uncoupled temperature and stress

distribution in the slab with the appropriate boundary and initial conditions.
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UNCOUPLED TEMPERATURE DISTRIBUTION - USE OF GREEN'S FUNCTION

We are interested in solving Eqs. (23), ... (23-c) for a prescribed g(t). The

solution can be obtained by using standard operational techniques such as Laplace

transforms. However,this approach although apparently straightforward, is too un-

wieldy because of the computational difficulty in obtaining the inverse transform.

A .more elegant and efficient approach is to make use of the method of weak solu-

tions. This involves constructing the appropriate Green's function for the adjoint

system, and then using this Green's function in an integral manner to calculate

T°(x,t).

The first step in solving ior the uncoupled temperature field is to define

this Green's function. Let (x,t) be the coordinates of a field point imbedded in

the region R: (0 < C < 1, 0 < T < t1 (t1 is an upper bound in time). We define

G( ,x; T,t) as the solution to the following adjoint boundary value problem:

r2Gcr+G: -= ( -x)M(T-t), O<, x<l, O<T<t<t I  (25)

= 0, G = 0; = O 1 G-BIG = 0; E =1, G + 2G = 0 (25a)
I r v 

2  
@ 2

The operator L*= r + - operating on G is adjoint to the heat conduction
2 c aT

operator L = r2- - - operating on T0 ( ,T) in Eq. (23). (Note that ( ,T) are

variables and (x,t) is a field point in R). L is not self-adjoint. The non-

homogeneous term in Eq. (25) consists of the Dirac delta functions 6(E-x)6(T-t).

As seen below, this form for the non-homogeneous term has the property of pickinc

out the value of T0 at the field point (x,t) upon integration over the region R.

Green's function depends on the region involved, i.e. whether E<x or E>x so that

for E<x, G =G (the left hand Green's function) and for E>x, G = 6 r . G is con-

tinuous across E=x but there is a finite jump discontinuity of GE at E=x. Also G

is symmetric in the sense that GY( ,x; T,t) = Gr (x,; -c,t). The interpretation of

G is that it is a solution of the "backward" heat equation (G = 0 for T = 0, t > t)

with an impulsive source at E=x at time T=t, as shown by the backward heat operator

L* in Eq. (25) and the delta functions for the non-homogeneous or source term.

Eq. (25-a) shows us that G is moreover the solution for homogeneous boundary condi-

tions of the "radiation type." Thus, the problem of solving for T°(x,t) from Eqs.

(23), ... (23-c) is first reduced to solving the simpler problem for G.

Having obtained G, we calculate T0 (x,t) from the following integral identit,

(making use of Green's identity):
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tl 2 tl 1
f G(r2T -T )d d= f [GT G T]1d-f [GT] dC

0 0 0 0 0 0

+ f tfIT(r2G +G )d~dT (26)
0 0 U

where the region of integration is R: (0< <l, O<T<tl). The left hand side of

Eq. (26) vanishes because T(E,T) satisfies the heat equation. The last integral

on the right becomes -T(x,t), by virtue of Eq. (25) using the properties of the

delta functions. The first two integrals on the right involve boundary conditions.

The second integral vanishes because G=O at T=0 and T=t1 (tl>t). Hence Eq. (26)

becomes

T0(xt) = f  -T°(l'T)[G (1,X; T't)+$2G(I'x;T't)] + T(O'T)[-G(Ox; Tt) I dT
0 ~)+ 2G-al G(tXt) +

+aIG(O,x; ,t)Tg (T)

Using the homogeneous boundary conditions on G given by Eq. (25-a) we get the final

expression for T0 :
t

T°(x,t) = 0l f G(O,x; T,t)T (T)dT (27)
0

since G(O,x; T,t) = 0 for T>t. (Note tI>t).

To obtain G(O,x;-r,t) we must solve the boundary value problem for G given by

Eqs. (25, 25-a). We do this by taking the Laplace transform of this system. We

obtain the following boundary value problem:

G + q2G = 6(F-x)e- St, 0<, x<l, t>O (28)

C 0, = 0; = 1, + = 0 (28a)

where G is the Laplace transform of G with repect to T. The solution is

(AcosqE + BsinqE , &<xiIE•st eSt (29)

I AcosqE + BsinqC +- sin(E-x), E>x
q

where
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st 2

e-[tcosq(l-x) + - sinq(l-x)] B1A 2 _
,B q q =r(12- q)sinq+ ( I+ 2) cosq

q12

The values for s are the roots of the following transcendental equation:
YI 2( - q -) q ( 1

tanq = - (31)
q2- 1 2

These roots are denoted by the set {q }, n=l,2, ... The inverse Laplace transformn
is obtained by use of the inversion integral. The result is

G(C,x; r,t) = GrG r >x

-s (t-t)
0 en

G (C,x; rt) n=l Q'(Sn) (qncosq n + lsinq n)[qnC°Sqn(l-x) + 2sinqn(l-x)]

Vs 1 {[BiB 2-q
2 (al+s 2+3)]sinq + q [2( +B2)+Bl 2-q

2]cosq} (32)Q(n) 2qr2 12 1212 12

and the eigenvalues sn are obtained from the corresponding roots of Eq. (31). In

using Eq. (27) to solve for T0 we need only set =O in the above expression for G
and calculate the integral in the right hand side, knowing the gas temperature as a

function of time.

TEMPERATURE DISTRIBUTION UNDER REPEATED HEATING

In the case of a slab subjected to repeated heating, T (t) may be described by

a series of Dirac delta functions displaced in time:

N
T (t) = T I 6[t-(m-l)tR] (33)

g 9M=l

where tR is the time elapsed between cycles, N is the number of cycles of heating,

and T is a constant gas temperature. Substituting Eq. (33) into (27) gives
9
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,oN -s [t-(m-l)tR] qn[qncosqn(l-x) + a2sinqn(l-x)
T°(x,t) ITg I e n()

n=1 ml Q'(sn)

Eq. (34) is the uncoupled unsteady temperature distribution in a finite slab under
repeated heating of the inner surface for the "radiation" boundary condition given

by Eq.s (23-b,c).

UNIT STEP FUNCTION IN STRESS, f(t)=l

We now turn to the coupled expansion coefficients Tn, a n, n>O, in the system
given by Eqs. (22, 22-a,b). As an example of a coupled system we consider a unit

step function in stress applied at x=O, the other boundary conditions being
homogeneous. We wish to solve the boundary value problem given by Eqs. (22,22-a,b)

for the case g(t) = 0, f(t) = 1. It is easily seen that the series expansions

given by Eq. (21) become

a(x,t) a2n(x,t)h 2n , T(x,t) = T2n+l(x,t)E2n+l (35)
n:O n=O

The uncoupled field is given by T°(x,t) = 0 and ao(x,t) the solution of the
boundary value problem given by Eqs. (24-a,b,c) for f(t) = 1. This is easily ob-

tained by taking the Laplace transform with respect to t which is designated as

(x,s). The boundary value problem for a(x,s) involves the following ordinary
differential equation:

ao" _ X2ao O, O<x<l , =
r (36)

x 0 , (O's) = 1 x = 1 , a(l,s) = 0

whose solution is

= 1 sinhX(l-x)
s sinhX

This can be expanded into the following series of exponentials:

a ( e(X)-e-(lX) _ l [e- r2~) e-A[2(n+l)-xj (37)
: se(l-e-2 ) - :n=O

The inverse Laplace transform of Eq. (37) gives
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ao(xt) I [s2n+x (t) - s2(n+l)'x(t) {  <t<>k (38)

(Note that t is replaced by rt). The interpretation of this solution is that

multiple reflecting stress waves propagate in the strip O<t, O<x<l which satisfy

the boundary and initial conditions. This is shown in Fig. 1 "Characteristic

Diagram for Uncoupled Stress Distribution for Unit Stress Input." The solution

for o°(x,t), as seen from the figure, is best interpreted in terms of character-

istic theory.

The region n is the triangle whose boundaries are the characteristics

x+t = 2n, x-t = -2n and the line x = 1, 2n-l<t<2n+l. In this region o°(x,t) = 0.

The neighboring region n+l is the triangle bounded by the characteristics

x-t = -2n, x+t = 2(n+l) and the line x = 0, 2n<t<2n+2. in this region a°(x,t) = 1.

We see that a0 alternately jumps from zero to one to zero, etc. The jumps are

across the characteristics. This means that ot(x,t) = ti across each character-

istic depending on whether the characteristic has a positive or negative slope,

and ao(x,t) = 0 elsewhere.

As an example of a typical firing condition, we take a stress input at the

inner boundary as a series of uniform pulses of unit strength, pulse width = 2

millisec, time between pulses = 0.1 sec., thickness of gun barrel = 1.6 cm,

cI = 3xlO' cm/sec. The time for a stress wave to travel from the interior to the

exterior boundary is 5 psec. This means that a stress wave initiated at the inner

boundary will travel back and forth 200 times during one pulse, so that multiple

reflections (due to the finiteness of the region) are important.

The first order coupled temperature distribution T'(x,t) is obtained from

Eqs. (22-a,b) for n = 1.

Using the jump condition of ao(x,t) at the characteristics, the b.v. problem

for T' becomes

r2T - T1 = a26(x-t) + a2 Z [S(2n+x-t)-6(2n-x-t)] (39)
n=l

x = 0, T'(o,t)-BT(O,) = 0; x = 1, Tx(l,t)+0 2T'(l,t) = 0

where 6( ) is the Dirac delta function. The solution for this non-homogeneous

p.d.e. for T' with homogeneous boundary and initial conditions is obtained by using

the Green's function technique (described previously for the uncoupled temperature

distribution). We make use of the Green's identity given by Eq. (26) where the
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Green's function G(C, x; i,t) is given by Eq. (32). Inserting Eq. (39) in the

left hand side of Eq. (26) (replacing x by and t by T in Eq. (39)) andinserting

the homogeneous b.c. g(T) = 0 and Eq. (25) in the right hand side, we get the

solution for T':

t l
T'(x,t) = f f G(', x; T, t)f(E±T)d~dT

0 0

f(E±T) = a26(r-T)+a 2 1 [6(2n+E-T)-6(2n-E-T)] (40)
n=l

The higher order perturbation expansion coefficients a2n(x,t) and T2n+l(x,t) are
obtained by successively solving the iterated system given by Eqs. (22, 23-a,b).

For example, to calculate a2, insert the solution for T' in the right hand side of
the second equation of Eq. (22). a2 is then the solution of a non-homogeneous

p.d.e. with homogeneous b.c.'s. Then use the solution for T' and a2 to calculate
the right hand side of the first of Eq. (22). This gives a non-homogeneous p.d.e.
with homogeneous bc's for T3 . Working in this manner we calculate as many of the

expansion coefficients T2 n+ l and a2n as we need,

UNIT GAS TEMPERATURE

We consider the case of zero stress at the boundaries and unit gas temperature
at the inner boundary. We want to solve the iterated system Eqs. (22, 23-a,b) for

the expansion coefficients Tn, an using the boundary conditions f(t) = 0, g(f) = 1
in Eq. 23-a). Inserting the perturbation expansions for a(x,t) and T(x,t) given

by Eq. (21) into Eqs. (22, 23-a,b) for the appropriate b.c.'s gives the following

expansion:

G(x,t) = 2n+l (x,t)E2n+l, T(x,t) I T2n(x,t)E 2n (41)

n=O n=O

Note that for this case only the odd expansion coefficient for a and the even

expansion coefficients forTare non-zero which is the reverse of the first case for
f(t) = 1, g(t) = 0. The same procedure is used to solve this system iteratively

1n~ 2nfor the a2n and T
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A NONLINEAR HYPERBOLIC VOLTERRA EQUATION

OCCURRING IN VISCOELASTIC MOTION.

John A. Nohel
Mathematics Research Center
University of Wisconsin
Madison, Wisconsin 53706

ABSTRACT. A mathematical model for the motion of a nonlinear one dimensional
viscoelastic rod is formulated and analysed by an energy method developed by C. M.
Dafermos and the author. Global existence, uniqueness, boundedness, and the decay
of smooth solutions as t - are established for sufficiently smooth and "small"
data.

1. INTRODUCTION. In this paper we motivate and summarize results on the
global existence, uniqueness, boundedness, and decay as t of smooth solutions
of the nonlinear Cauchy problem:

Utt (t,x) = o(u(tx)) + ft a'(t-T)o(U x(T,X))xdT + g(t,x)
0

(VE) (0 < t < -, x CR)

u(0,x) = u0 (x) , ut(0,x) = U (x) (x c 1),

for appropriately small, smooth data uo,ul,g; a : [0,-) -*+ , a : I- P
(c(0) = 0), g: [0,-) x R - IR, u0 , u1 :]R -R are given functions satisfying assump-
tions motivated by physical considerations sketched below and partly by the method
of analysis. In (VE) subscripts denote partial derivatives and u is the un-
known function. In addition to the Cauchy problem (VE), we will comment on several
closely related initial-boundary value problems.

The results stated in section 2 were established recently by a general energy
method for the study of nonlinear hyperbolic Volterra equations developed jointly
with C. M. Dafermos [4].

Problem (yE) arises in the following physical context. Consider one dimen-
sional motion of an unbounded viscoelastic rod of unity density. According to the
theory of materials of "fading memory" type (see Coleman and Gurtin [1]) the stress
S(t,x) at time t and position x is given by a functional of the history of the
strain, uX(t-T,x) (T > 0), where x+u(tx) denotes the position at time t of
a section of the rod which is at position x in the unstretched configuration.
In the nonlinear case the theory suggests assuing that the stress functional S
has the form

(1.1) S(t,x) - a(Ux (t,x)) - ' b(Ir)ou x(t-T,x)dT (t > 0 ),
0

with the history of the displacement u(t,x) prescribed for t < 0 and x 3R.
Relaxation experiments of materials indicate that a, 0: R -It are smooth func-
tions which satisfy the assumptions .a0) ( (0) - 0 , a'( ) > 0 , >'(} 0

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024 and Grant
No. DAAG29-77-G-0004.
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c 3R), and that the " inf luence" (or memory) function b: 10,m) It satisf ies

b(t) > 0 , b'(t) < 0 for t c e+ and that bc Ll(0,'O) (e.g. b is a linear
combination of decaying exponentials with positive coefficients). We remark that
a standard assumption of linear theory is that a(M) = cl&, 0( ) = c2& where
cl,c2 > 0 are constants [2].

If the rod is also subjected to an external force F(t,x), then the equation
of motion for the rod is

(1.2) utt(t,x) = S x(t,x) + F(t,x) , (0 < t < -, x e I,

together with prescribed initial values u(0,x), ut(0,x), where S is the stress
functional defined by (1.1). Recalling that the history of displacement is pre-
scribed for t < 0 and defining

(1.3) g(t,x) = F(t,x) - r b(T)S(U (t-rx)) dT
t

for t > 0 , x e IR shows that the motion of the unbounded viscoelastic rod is
described by the Cauchy problem

(1.4) ( u t t =G (ux ) x - b*(u x ) x + g (0 < t < -, x C )

u(0,x) = u0 (X) , ut(0,x) = U1 (X) (x C R),

where * denotes the convolution, defined by

(b * 4(U x) )(t,x) ft b(t-T U x (r,x)) xdT
0

Our method of analysis requires us to make the further assumption

(1.5) O() = ca() (& E 3),

where c > 0 is a constant. Assumption (1.5) is satisfied in the linear case
and is reasonable for certain nonlinear problems. We shall be primarily inter-
ested in the "genuinely nonlinear case" a"(&) .0 0 ( 3 eR).

Consider next the Cauchy problem (1.4) with g E 0 (or lm g.(.,x) - 0
uniformly in x ), under assumption (1.5). The corresponding steady state prob-
lem is meaningful if it is assumed that

(1.6) - c b(T)dT > 0
0

assumption (1.6) has the interpretation that the static modulus elasticity is
positive (see Dafermos (2], [3] where the same assumption is made in the linear
case). With the assumptions (1.5), (1.6), and those concerning b made above,
we can reduce the Cauchy problem (1.4) to the equivalent form (VE) as follows:
define a 0,-) -K + by
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a(t) = a + A(t) ; a =1-c b(T)dT > 0

0
(1.7) At) = c f b(r)dT; a(0) = 1 ; At) > 0 , A' Ct) < 0

t
for 0 < t < -; A(-) 0;

define g by (1.3); then (1.4)-(1.7) is equivalent to (VE). -The analysis which
follows will be concerned with (VE), where a satisfies the physically reasonable
asst mptions implied by (1.7); for technical reasons based on our analysis we shall
require that a satisfy somewhat stronger assumptions.

To motivate our result for (VE) we begin with some general remarks. If
a(t) 1 , (vE) reduces to the equation of nonlinear elasticity

(E) u = G(U) + g I u(0,x) = uO(x) , ut(0,x) = u(X)

If g 0 in (E) and if a is "genuinely nonlinear" Lax [61, has shown that (E)
fails to have global smooth solutions in time, no matter how smooth one takes the
initial data uo 1u , due to the development of "shocks" (the first derivatives of
solutions generally develop singularities when characteristics cross).

Nishida [131 has shown that for the wave equation with "frictional" damping

utt + ut = a(Ux)x , u(O,x) = U0(x) , ut(0,x) = Ul(X)

the dissipation precludes the development of shocks if the initial data are suf-
ficiently smooth and "small", resulting in global smooth solutions. The proof whic
rests on the concept of r-iemann invariant is restricted to one space dimension.

MacCamy [101 has redently studied (VE) on (0,-) x (0.1) and homogeneous
Dirichlet boundary conditions at x = 0, x 1 1, by combining Nishida's method with
certain a priori estimates under suitable assumptions on the kernel a(t) and the
forcing term g . His object is to show that the memory term in (VE) induces a
dissipative mechanism which guarantees global existence for "small" initial data
and forcing term. The problem of obtaining the existence and uniqueness of a suit
able local solution of (VE) to be continues with the aid of the derived a priori
estimates is not discussed in [101, but this gap can be filled by the method out-
lined in Nohel [141 where the result of (13] is extended.

The object of this work is to study (VE) by a different approach based en-
tirely on energy estimates and not on Riemann invariants. While the exposition is
restricted to the one-dimensional problem (]E) for clarity, the method can be
applied to problems in any number of space dimensions, provided estimates on deriv
atives of sufficiently high order are computed. This approach to (VE) may b'
regarded as a generalization of recent work of Matsumura [li1, (121 who studies
multi-space-dimensional nonlinear wave equations with frictional damping for small
data by a similar energy method. We are grateful to Professor Nishida for explair
ing this approach to us during a recent visit to Madison.

We remark that the special case of (VE) resulting from the kernel aft) =
i(l + exp(-t)) can easily be shown to be equivalent to the Cauchy problem
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u tt t + utt - G(Ux)xt + k(u ) + gt + gxt x x

u(Ot) = u0 (x) , ut(O,x) = (X) , utt(O,x) = ONOX) ,

which was studied by Greenberg 15]; his result is a special case of ours.

Finally, we note that (VE) is of the abstract form

u"(t) + Au~t) + a'(t-T)AU(T)dT = F(t), 0 < t < -,
(A) 0

u(O) = u 0 , u(0) = u I

where Au is a nonlinear operator (Au = (u ) together with conditions at
ax

-m, or boundary conditions at say x = 0,1). Abstract problems of the form (A)
have been studies by Londen [7], 18] for a class of kernels a(-) which are posi-
tive, decreasing, convex on 10,-) and satisfy the crucial assumption a'(0+) =
--; the latter assumption is not satisfied by most "memory" functions in visco-
elasticity.

2. STATEMENT Or RESULTS. We make the following assumptions. Concerning a
let

a) a e C c3) , e(O) = 0 , '{() ' 0

the first for technical reasons and the remaining on physical grounds. Concerning
the kernel a assume

(i) a e (3) [O,)

(ii) a(t) = a + A(t) , a. > 0 , a(O) - 1 , a'(0) < 0(a)
(iii) (-)JA(j) (t) > 0 (0 < t < - ; j = 0,1,2),

(iv) tA (t) C L (0,-) (m,j - 0,1,2,3),

where B(m ) [0,-) is the set of functions with bounded, continuous derivatives on
[0,m) up to and including order m The meaning of assumptions (a) is that the
kernel a in (VE) is positive, smooth, decreasing and convex on (0, -), and
that the part A(t) of a and three of its derivatives have moments up to order
three integrable on [0,-). The forcing term g is assumed to satisfy

(g) go gt e L1([0,-); L2 R)), gX, gtt# gtx E L 2([0,); L 2O)),

meaning that g and some of its distributional derivatives decay sufficiently
reapidly at infinity. The initial data u0 ,ul satisfy

uO) u0 e H 
3 OR), (u u 1u 2 O)•

Our result concerning (VE) is (see [4; Theorem 5.1]):
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Theorem 2.1. Let the assumptions (a), (a), (g), u0 ), (ul) hold. If1 L2

the HCOR) norms of u 0x, Ul• the L ([0,); L 2R)) norms of g, gt' and2 L2

the L 2([0,); L 2R)) norms of gx' gtt, gt, are sufficiently small then (VE)

has a unique solution u c C 2([0,) x ]R) having the following properties:

(2.1) ut, Ux, Utt, u, uttt Uttx utxx, U xx x  L(,); L R

(2.2) u tt, Utx , U xx u ttt, u ttx ' Utxx, U xxx o [,) R)

(2.3) utt(t,.), U tx(t,-), U xx(t,-) - 0 in L2 CR) as t -.

(2.4) u t(t,x), u x(t,x), u tt(t,x), utx (t,x), u (t,x) - 0 uniformly in PR

as t--.

We remark that conclusions (2.3), (2.4) are an easy consequence of (2.1),
(2.2). It also follows from the proof of the theorem that the solution u has

a finite speed of propagation. In addition, we note that the same result hold
(and with the same proof) for the following two problems of a viscoelastic rod of
unit length:

(i) (VE) on (0,-) x (0,I) with homogeneous Neumann boundary conditions at
x - 0 and x = 1, and with initial data prescribed on [0,1].

(ii) (VE) on (0,-) x (0,1) with homogeneous Dirichlet boundary conditions
u(t,0) = u(t,l) - 0 , and initial data prescribed or (0,1], provided one also
assumes that the forcinq term g also satisfies g(t,O) = g(t,l) E 0 . Finally,
we observe that a comparison of Theorem 2.1 and its proof in [41 with Mac Camy's

results in (10] shows that our approach, in addition to being simpler, more
direct, and not restricted to one space dimension, yields a more general result.

3. COMMENTS ON THE PROOP OF THEOREM 2.1. our procedure can be outlined as

follows. We first reduce the problem (VE) to the equivalent formf utt(t,x) + -L (k * u) (t,x) = o(u (tx)) + *(t,x)

(3.1) (0 < t < ,x 3R)

u(0,x) = uo(x) , ut(0,x) = ul(x) (x C 1)

where k is the resolvent kernel of a' defined as the unique solution of the
linear equation

(k) k(t) + (a' * k)(t) - -a(t) (0 < t < M)

By standard harmonic analysis methods, and by a frequency domain argument to
obtain the last conclusion (see Nohel and Shea (15, Theorem 1]), the resolvent
kernel has the following properties:
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Lemma 3.1. Let assumptions (a) be satisfied. Then

(i) k c B(2) 10,-), k(O) > 0
(ii) - k(m ) L1(0,- )  (m = 0,1,2);

L2
(iii) For every T > 0 and for every v c L (0,T) one has

v(t) (k * v)(t)dt > 0

0 d

The function 0 in (3.1) is determined in terms of g and k ; assumptions (g)
and the properties of k in Lemma 3.1 imply that 0 satisfies

L1 2 22

(0) 0,0 c L ([0,;L 2R)), x'tttx E 2 ([0,-); L2 CR)]

The (non-physical) assumption (1.5) which is crucial for the reduction of (VE)
to (3.1), is not used anywhere else in the analysis.

The next step is to prove the existence and uniqueness of a sufficiently
regular, smooth local solution u of (3.1) on [0,T] x PR for some T > 0 ; this
is dcne with the aid of the Banach fixed point theorem and a fairly standard
energy argument (See [4; Theorems 3.1, 3.2].

The essential and rather tedious part of the proof is to establish a series
of energy estimates for derivatives of u by elementary methods which allow the
extension of the local solution into a global one. Unfortunately, this requires
yet another transformation of the Cauchy problem (3.1) (equivalent to (VE)),
because property (iii) of Lemma 3.1 only allows us to obtain uniform bounds on

2
(s,x)dx u2 (sx)dx fs ru(t,x)dx dt , on any interval

.0 x 0 -

0 < s < T on which the local solution exists (see [4, estimate (5.7) and remarks
following). The additional transformation is elementary but technical (see [4,
Section 2, part II, especially Lemma 2.31). The long series of energy estimates
for the newly transformed problem (see (4, estimates (5.8)-(5.25)] which allow
continuation of the local solution and from which one obtains at the same time
conclusions (2.1), (2.2) of Theorem 2.1, each have the form

(3.2) E(t) - E(o) < -ft fQ[u,uldxdT + ft f P[u,ujdxdT + ft f [u,OldxdT
0 cc 0 cc 0 c

where E(t) is an "energy" that controls the growth of the solution; Qfu,u],
the dissipation term induced by the memory term, is a positive definite quadratic
form in a set of derivatives of u(t,x); P[u,u], the remainder term due to the
nonlinearity of the problem, is a quadratic form in the same derivatives as
Q[u,uI and with coefficients that are small whenever the "energy" E is small;
finally, H(U,o] is a bilinear form in the set of derivatives of u(t,x) in-
volved in .[u,u] and in f(t,x) and some of its derivatives. The idea now is
that for as long as E(t) is small, P[u,ul is dominated by -O[u,ul. Moreover,
the Cauchy-Schwarz inequality allows us to dominate the u-part in T(u,01 by

-Qju,uJ. Then, if E(O) and 0 are "small", (3.2) shows that E(t) remains
small and the cycle closes.
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4. CONCLUDING REMARKS. We have in Section 3 indicated the crucial role of
assumption (1.5) in our analysis. Since this assumption is not really physical,
considerable effort is being spent in current research to remove it by attempting
to apply energy methods directly to the physical equations (1.4). If these
efforts'are successful, there is hope of being able to apply such (possibly modi-
fied) energy methods to treat the considerably more complicated system of non-
linear hyperbolic Volterra equations which describe nonlinear viscoelastic motion
in two and three space dimensions.
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A NEW TECHNIQUE FOR THE SOLUTION OF NAVIER'S EQUATIONS

Francis E. Council, Jr.
Management Information Systems Directorate

U. S. Army Mobility Equipment Research and Development Command
Fort Belvoir, VA 22060

ABSTRACT. A solution for the partial differential
equations otherwise known as Navier's equations is obtained
by means of Fourier transforms and Parseval's relation which
are used to form a Green's tensor. The displacement functions
that are obtained by this technique are used with a forcing
function with a randomly occurring phase and amplitude to
synthesize the accelerations and frequency spectrums of earth-
quakes. The techniques that have been developed in this paper
have an applicability to other types of partial differential
equations.
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NOTATIONS. The following notations are used in this unless
otherwise specified.

Fit F , F = components of force associated with the
1 2 s forcing function

F = symbol for the Fourier transform
-I

F = symbol for the inverse Fourier transfori,

(G) = Green's tensor

Gk  = base vector in curvalinear frame

gK = base vector in curvalinear frame

U = displacement vector

U , U , U = components of displacement vector1 2 g

X , X , X = coordinates of a point in undeformed
1 2 3 coordinates

X= one of the coordinates of a point in the
undeformed state

x , x , x = coordinates of a point in deformed
1 2 s coordinates

i
x = one of the coordinates of a point in the

deformed state

T = time variable

z = a coordinate of the Cartesian coordinate
I system, undeformed

z= a coordinate of the Cartesian coordinate
system, deformed

a = prestrained strain amplitude

,= lame's constants

p= density

W = angular frequency

( ] = matrix
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I. INTRODUCTION. This paper addresses the problem of
solving some partial differential equations, namely Navier's
equations with a specific application being synthesis of
accelerations and frequency spectra associated with earth-
quakes. Solutions tor these partial differential equations
were obtained by means of Fourier transforms and Parseval's
relation being used with a Green's tensor. The techniques
that are developed in this paper are of sufficiently general
nature such that other partial differential equations may be
solved by means of these techniques. The justification for
the equations that were developed as well as the results that
were obtained help to give some insight as to the causes and
effects of earthquakes.

2ef.)re discussing the solution of the Navier's ecuations,
some background should be given as to the system of coordi-
nates and the forcing function that were used. The model that
has been chosen in this paper as representative of an earthquake,
namely a dislocation, implies that there is a release of energy
associated with an earthquake. This release of enercy is not
instantaneous but occurs over a finite period of time. The
random nature of seismic disturbances is an indication that the
periods of this oscillatory process occur with randomly occuring
lengths. This then suggests that some function such as a sine
function with a different period for each oscillation be used
such that a time history of the accelerations in the surrounding
medium can be obtained. The previous discussion would seem to
indicate that a frequency or a phase modulation could be used
with this sine function. Since actual seismograms display peaks,
a factor for amplitude modulation can be included. It then
follows that if the times for an acceleration to go from zero to
a maximum and then to zero are represented as a random sequency
of numbers, i.e., T1, T2, T31...,Ti, then the total time for a

n-i
disturbance can be represented as T = E T. + t where t - T..

ii 1

Continuing in this manner, then a function that can be used as a
forcing function for synthesizing the main portion of an earth-
quake by means of the equations developed in this paper for
describing the displacement in the surrounding medium can be
expressed as

F(t) = aTi  (sin r(n-!) + t_) (1.1)
2(.64) Ti

where a is the constant for gravitational acceleration.
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The specific choice of coordinates can no longer be
deferred. In order to facilitate computations, a Cartesian
coordinate system is chosen such that two of the axes are in
the plane of the discontinuity associated with a dislocation.
For instance, if a slip strike is being considered, then the
X, of the undeformed state and xI of the deformed state are
parallel and perpendicular to the plane involving the dislo-
cation. The X. and x coordinates, referring to the undeformed
and deformed states, respectively, are coincident with the
plane of the dislocation and perpendicular to the surface of
the Earth. The third members of the triads for describing
undeformed and deformed states, X2 and x2, respectively, are
parallel to the plane of the dislocation and are colinear. If
a dip strike is being considered, then displacement is with
respect to the X. and x, coordinates. In this paper, there is
only one force, F., for a dip strike which is a function of the
magnitude and which is directed along the X, coordinate. A
slip strike has a force, F2, directed along the X2 coordinate.

II. MODIFICATION OF STANDARD DEFORMATION THEORY FOR A
PRESTRAINED MEDIA. The residual strain field present

after an earthquake is a contributing factor to the magnitude oi
the stress waves associated with an earthquake, the volume
adjacent to a fault being no longer isotropic if it was previ-
ously isotropic. For the propagation of certain stress waves,
a prestrained media is required. Although it is more accurate
to consider the fall-off of residual strain energy as a function)
of distance by means of an expoential function, in order to
facilitate computations, one relationship between the undeformed
and the deforms coordinates can be given as

S-I i
= (I-a)X 61 (2.1)

where axial changes are considered. In this last equation, a
is the relative amount of change of one of the coordinates with
respect to the other. The simplest model that can be considered
for the residual stress field remaining after a slip strike or
dip strike has occurred is that of uniaxial compression. The
next model that can be considered, and a possibly more realistic
model, is that of both a compression and a dilation.

For a dip strike, i = 3, and for a slip strike i = 2. Sinr-
a solid is in general incompressible, this implies that the othL,
two coordinates, involving dilation, of the deformed state are
related to the undeformed state as

xi  1 I i
- - 61

(1-a )2
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such that for a dip strike, i = 1,2. This type of model offc ,'r
a way of describing the force that is associated v'ith the
release of energy of an earthquake. A fixed orthogonal C.arti
coordinate system is introduced by means of the real siijile v.
and reversible transformations where

XK X K (Z

ZK = ZK(XJ) K,J = 1,2,3 (2.3)

and
dxk  xk(zj)

z. = z.(xk) k,j = 1,2,3 (2.4)
J J

wjZk ZK - J- 0 (2.5)
a z K ;zk

A coordinate point is described in the undeformed reference
system, is described as R ZK K and in the deformed refet-ence
system as ' = zkek Base vectors in the curvilinear fi.wnes X
AND x k are defines as

Gj = a! g. r Zk = K (2.6)
aX J  Xj , x- = Txj £k

with .reciprocal base vectors being defined as

-K j D j , Xk ,. - -Ek axk  j  (2.7)

GKGj K , gkgj k (2.8)

A displacement vector, U, is expressed as

U = r- R (2.9)

These relationships are shown in Figure 2.1.
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III. MODIFICATION OF NAVIER'S EQUATIONS FOR A PRESTRAINED
MEDIA. One way of relating the stress tensor in

deformed state coordinates to the coordinates of the undeformed
state is by means of the Piola-Kirchoff stress tensor, defined
by the relationship

TKL = jxK, kX K,Tk = TLK (3.1)

such that

(xk,K TKL);L - Fkfk = 0 (3.2)

with the semi-colon indicating total covariant differentiation.
In this equation, Fk refers to externally applied forces and fk
refers to inertial forces. The mixed stress tensor (Piola) is
defined by the relationship

TKk = jXK , Tkk (3.3)

with TKk ;K Fk- fk= 0 (3.4)

The Piola-Kirchoff stress tensor and the Piola mixed tensor are
discussed further by Eringin (3) and Truesdell (5). Another way
of relating a tensor of a deformed state to that of an undeformed
state is by using finite deformation theory as developed by Green
and Zerna (4).

Since a prestrained medium is being considered, the rela-
tionships between the undeformed and deformed states as expressed
by equations (2.1) and (2.2) are used in equation (3.2). As
previously discussed a single forcing function is considered,
one that is consistent with equation (3;4) and that is acting
along the X3 coordinate axes. In view of these equations, then
three equations are obtained from equation (3.4) such that

(X+2p) + 211U + (l-) 2 2U 3 13 -P (3.5)(l-cL) U i (j-ct) ,12 ' t

I

U + (+2 + (1-a) a U2- 0 (3.6)

1,21 2,2 3U ,23 2 ,2
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1 1

( 2-)2 2 pU 1 31 + (l-Q) 2pU 2 2 3 + ( 2- ) 2 (+2J)U3 (3.7)' 3,33

82U

-P i-2
2

at

IV. OPERATORS USED WITH THE FOURIER TRANSFORMS. he setof partial differential equations that have been previc lydeveloped, equations (3.5), (3.6), (3.7), are most easily solvedby means of Fourier transforms although the equations can besolved by means of iterative processes used with a computer.

Prior to demonstrating the solution by means of Fourier
transforms, a brief description of the transforms used in this
dissertation is given here. If

Ff(xi) f e iPixi f(x.)dx. g(pi) (4.1)

and - l - i x.
F g(P.) =  e i g(pi)dpl (4.2)

then

F --L f (xi) =ipFf(x (4.3)ax. 1 i~~.

since

F F . f(x.) f ie p iXi Pi g(pi)dp iax 1 (4.4)

SF- Ff(x.) a f(xi)
ax. ax.1 1

The factor 7"27 has been changed to unity because of the contour
of' integration that is used to evaluate these equations.
Consider the contour of integration to be over the upper half
plane. If

f(xi) .
1 X.

1
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ip. x.
such that F 1 = fe dx. 7i (4.5)

xi  x. 1

-1

then F F I =f
x. x (4.6)1 i

and
-1 _ iPiXid__

F 1i - 7i f e dp.= i6 (x.) - _x. (4.7)
1

The slight modifications to the definitions of the Fourier
transform, inverse Fourier transform, and the Dirac delta
function, 6 (x-x'), are made in order to maintain a consistency
of development. Continuing in this manner, then

1 iPiXix.
F ____ - e dxi p (48)

(xi) 2  (xi) 2  i

Also _F -1- I = i 
(4.9)

Pi

-i 1

F r= x. (4.10)
1

Another important relationship that is used is Parseval's
relation for Fourier transforms ( ) where

F(T)G(T)dT = f f(-n)g(n)dn (4.11)

At this time some operations must be defines. Since

Fx, f(X ip (X and F _ ! f ( X,) = - p Ff(X I ) then this
ipisthat axIimplies that Ff(XI) = F f f(XI)dX1 and that - _ Ff(X ) =

ip (PI)

F ff f(X1 )dxldxl. Continuing in this manner, then the expression

PIP I P+ 2 )) can be expressed as an operator. For examp]e,

the wave equation in one dimensional space where f(X,T) is the
wave function is expressed as
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a2

( - -j) ,(X,T) = (x)6(T) (4.12)
9x2  C

Taking the Fourier transforms of this equation,
2

P T)FFT (XT) = CFFT (X)6(T) (4.13)
C

and rearranging,

FF ' (X,T) -
0 FT X)6(T) (4.14)

T ( 2(p2 
- .LL )
C2

If now the inverse Fourier transforms are taken,

(X,T) = CF-FT FFT(X) (4.15)
(p' _ -)

C2

with the usual way of representing the wave function as

(X,T) = Cei(X - CT) (4.16)

while for a wave traveling in the other direction,

(X,T) = Ce i (X+CT) (4.17)

such that 1 1

F-,T CFFT6(X) S(T) Ce i(XI(l-) - (+2) T)
PIP, 2 (4.18)

S1-a-'') - '()'+2p) )

which when extended to three dimensions is

-1 -1 CFFT6 (X) 6 (T)
F FT _ P W 2 2 p 2(711 p 2 p2P 22

(1-) () 'A+2)i' (1-cl) -1+2p) ) (PaP3(l-c) (XT2j)

iI
Ce i(X (1a)2 + X2 (1-00 2 + X3 (1-a) - 0'+ 2 p T) (4.19)C e 12 P

The constant C is set equal to 1 since dimensionally consistent
results are obtained with this value.
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V. THE GREEN'S TENSOR. One way of solving equations
(3-5), (3.6) and (3.7) is by means of a Green's tensor (2) If
operator notation is used

[LrU = F (5.1)

and

(LI (G] = - (6 (5.2)

then if the operator tLJ is a matrix of order three and the delta
function is of order three, then equation (5.2) is an indication
that the Green's tensor, [G], is a matrix of order three. If
Fourier transforms with respect to the spatial coordinates are
taken, then equation (5. 2) is written as a system of equations as

((X+2J) + 2 1_2U 1

(1-cX) pP + --2)FG11 + ( p-) p pIFG + Iat
2 2 P Pp 3FG 31

F6(X-X) 6 (T-t) (5.3)
F2

(2±21)i p pI + P a-)FG 2 + 2u Pp2FG 2 2

(;T 2)12 (1-00)

+ (l-ct) 2
1 jpp 3 FG3 2 = (5.4)

(X+2p) 2+ P FG + 2 p p FG
~(-ct) PP, 1 T 13 (l-a) 1 2 23

+ (2=p p 0 (5.5)

211_ ppFG + (++21) I(1- ) p22 (1-11) P 2P 2  + T )

1
2

+ (-a) 2 p P2 p3FG 3 1  = 0 (5.6)
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2

(_21J p__p_ aT2

2 p p FG + (( +2p) + -)FG(1-a) 2 1 12 (1-a) 2 2 22

2+ p(p 1  + ((+2p) 3P3 + P1
Ts P2p p FG 12 ( 1- a) P 2Pa2 T 2

1

+ (1-a) 2 2P 2 p3 FGs = 0 (5.8)

1 1

( t)2 2~p pI FG 13+ (1-a )2 2PP 3p2 FG

+ ((I-c) 2 (X+2p)PsP + P - 0 )FG (5 )

(.)truh(.1.Aaneaple a Forir5.nsor9wt

respect~ to tim of eqain(530ssow)saeapea

-1931

1 1

(1-ct) 2pp~p1 FG, 2 + (1-ct) 2i psp 2 FG22

+ ((l-t)2 (x+2p)psP + p -)FG 23 = 0 Xx (-)(5.10)

(1-pct~ po Fim of (quation (5.p3 )s honaaneamlea

2 a



I+2 2 211
( pP -Po )FFTG + -- ) P p FFTG

(Tct 1 1-I (1CIL) 1 2 T 1 2

2
+ (I-) 2 2 PP 3 FFTG = FFT6(X-x)6(T-t) (5.12)

At first glance, equation (5.2) and some related equations
would seem to be sufficient for determining the individual
elements of the Green's tensor if Parseval's relation and
equation (4.19) are used. In actuality, an additional technique
must be used. The group of equations, (5-3) through (5-1)- in
view of equation (5.2) can be expressed as

(P] [FFTG) = FFT ('-x)6(T-t 1 (5.13)

where the matrices rpJ , [FFTG3, and [FFT6(X-x) 5(T-t] are ex-
pressed 

as

-- I
(+2)plp l P- 2 2 PlP2  

2  2l p

(1-at) ( -a) P 2 3
2

(X+2P)p p 2-p2 _

(i- ct) p 1p () (1-) 2 2 p 3
(L-t) 2 ls 2PPP

(l) 2pplP (1-c) 2,p 2p ((+2-p) (1-C) 2 p 3p 3 2) (5.14)

F TFG1 1  FTFG2 F T FG3

[FjF G] FTFG2 1  FTFG22 FTFG2 3

GFTFG 2  F T PG (5.15)

and

FTF6 (X-x) (T-t) 0 0

XF (X)6 (T-t)g 0 FTF 6 (X-x) 6 (T-t) 0

0 0 FLF (X-x)6(T-t (5.16)
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If now the inverse of the matrix[P1 is given as[P)-l1  then

F TF(GJZ (p)[FF (X x) (T- t (5.17)
where

FTFII _L+ 2,) 2p 2 PC2 (X2pp pc W) (5.18)

-(1~) (a) 2 ()2
(1a)(211) p )(P )2 FT a[X-x'jfT-t)

FTFG12 '-(2)j ) (,_-)p p (p ) 2
D 1 2

1

F FG I (2p) )2p 3 1' 24pp {()+211)T 1 3 DIP p1  3 (i-a)(la2

2~2 w) 1FFT6(X-x)6(T-t) (5.20)

FTFG2, = (1-ac) (2p ) 2 p 1p 2(p 3)2 -2pi Pp 2*

2_C 3 2 W

((-)2(X+ 2 )1) (p 3 - 2 FFT6(Xx)6(T-t) (5.21)

FTFG 1( p p - pci 2 (1_0a) (X+21j)p p -piT22 D (i-a) 1 1 3 3

-(1-a) (211) 2( )2 (p3)2FFT6() S (T-t) (5.22)

( 2p

FTF? D (1-CO) 2 3

-(1-a) 2 2 1JP P (~+p ~ 1 pca) (5.23
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FFG3 1 = p1 p -(-t 2iiPIP 3
T D(1-x) P)P

((X+2vJ) pW2(524
(1-ct) 2 F SXX6( )(.4

F 32 D (1-c) 2  223 2 3

(!+1)p -p )}FF T6(X-X)6 (T-t) (5.25)

FFG (X+2pi) -w2)H(X+2p) (P p 2)

FT F3 3 D (1-ct) I11 (c) 2 2

(1-ct) a (p1) ( 2 }IFFT X )6(T-t) (5.26)

(1ct 1+2 1 p (ict ) P o ) (X+21A) (i -() 2p P3  - p

+ (2Pi) 3(p p p )

12 3

-(2P.1)2 {(lCt) (PI 2 (P)2( (A+212) p2-w2)
I (P3  (1-at)

2 )2 (X+2pJ) 2

2 2

(PI) (P2)2

(1-ct)X+p~~p-p (5.27)
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As an example, the elements of the Green's tensor[G are
obtained from equation (5 .18 ) with equations (5.19 ) through
(5.27 ) being developed in a similar manner. First rewrite
equation (5.18 ) as

pp 2 pp 2 p
ii I _ PW ( 2 2 (Wp33 23

(1 -a) (X +21') (1-a) (X+2j) (1-a)

2

(X+1' (X+21i) 3 + (2) 3(pp3 2

-(211) 2(X+21) ((-a) (p 2 (p 2 ( p 2 p 2 P
1 3 (t.-aL) (X+211)

+ (1-a)() (2 ( )2 (PII 2 C

2 2

+ (1-) (2) ((1-a) 2p3 p3  W (X2 ) FFTGl

= 2P2t~ -W (Ae2, (p 3 3 (1-a) 22) - _(1-) (2Ij 2 (p)2

2 (-1 2(.28Ip3 FFT6(X-x)6(T-t) (.8

equation (5.28) is now developed as
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3 + PIPt 2 P 2 P 2  P 2 2(-2)3+( 9. ) ( -6 ) (p p 3 (l-a){( p( (1-a) (X4 211) (i-a) (X+2j) 3 3

p 2 2 2
) (ppp) - (2p) (X+2)X +2 P1)

((i-a) ( ) (_+2p 2 p(-)

p 2) ( 2 P)P P

(+ 2 ) )(P (P 3 ) + (-a) 2 2

(1I (X +2ii)

2 2 2 2

(X+2P) 3

p PP. FFTGI1
WP)P PP 2 2 2

2t T ) 7 (X p (-a)((1-a) -(+2) ) ((-a) (X+221) 3 3 (( +2)

2 2

P2P2 p) 2 ___2 2
(l-a) ~~~~ ~~~(X+21)(1P( - )  l2)(P)P)}

2 2 2 EFT6(X-x)6(T-t)
(_LI _ I PW ____ P) ) (p 3 P 3 (l-a) 2

(-a) (A+2p) (1-a) (X+211) (5.29)

which with the aid of Parseval's relation and with the operator's
previously defined is evaluated as
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G11 (X1 X2 #,,T; x1 ,x2 ,xg t) = f(exp(i(X 2(1-i) + X3

-(±2L)T))2  (211) [(X-x) 6(T-t)} (S .0;)

where1

DP U (+20) 4exp(i((X1 +X2) (1-ct)2 4 (1-) - p+1)T)

+ (21') -(A+211) (211) " 4exp (i((X I (1-Ct)

(XQ+2 )2T)) + exp(i((X2 (-x) _-(+2) T))
p p

x2
+ exp(((l.) __ ( - T (5. 31)

Continuing in the same manner, -then the other elements of the
Green's tensor are given as

G1 2(X1 ,X21 X3 ,T; xl1 x2 px21 t)- 2- ((2u') exp(i((X +X) (1-aIV

X3 2

+ T)) - I2J)](exp(i((X 3 (-)

p

G1(XXX1 ; 1, 2, 2 t) (2 )1,2) exp (i((X +X2 ) 0-ct)

+ T..- (~ 2 1 T)) -21'(X-i21) exp((i( X2(1C)2-Q+I)T)

f 6(X-x)6(T-t)) (5.33)
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G2 (X1 1x2 x3 1 T; x x x t) = (2J) (exp(i((X +X ) )(1a)
21 1 2 31 2 3 DP1 2

2

+ X3 (l-t) - ("+2') T) - (,X+ 2 11) Pl exp(i((X3 (1-aV'
p

1

- k+ I )T)))6(X-X)5(Tt)j (5. 34)

G 2 2 (X 1 ,x 2 X3 ,T; x 1 x 2,x 3 ,t) 1 t(+2J)2 exp(i((X )(1-a)7

2P 1

"+ X3 ('-CC(a))T - (211) 2exp (i ((X I+X) 21c

1
2 ~ -

+ X 3 (l-t) - X'+24') T))}{f6(X-'X)6(T-t)1 (5.35)
p

YT 2 2

+ X 3(-)' (X2,,) 2T)) (21j) (X+2i) exp (i ((Xi (1-0.)2
p

- -)T)){ 5(X- x) (T-t)} (5.36)p

DP
1 1

+ X 3(a 1 -0 (A+_ 2.2T 2p (X + 2p) (exp (i (x2(Ic

p
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32(Xi,X 2 ,X 3 ,T; x1 ,X 2 ,x 3 ,t) ( ( 2 (exp(i( (X +X

+ X3 (1-a) - l - (A+21) 2T))) - (X+ 2 p)exp(i(x(l_.) 2

- (62- )(T) [ ( X- )6 (T-t) (5.38)

2 2G3 (X 1 'X2,XT; x Ix 2 x3 t) =- f(X+2j) exp(i(XI+X2 (-a)
I 

I

2T) (211) exp(i((x +X2 )(-) + X3 (-a)

I
(-- --- T))}f (X-x)6 (T-t)} (5.39)

VI. THE DISPLACEMENT FUNCTIONS.

With a Green's tensor having been developed, then thedisplacement functions can be obtained. Consider the force thatis causing the displacement to be expressed as a vector, i.e.

F F F2

(6.1)

with the displacements being obtained as

U (G] F d X dT (6.2)

Expressed in component form, then

U, f (GIIF 1 + G12F2 + G1 3 F 3 )dXdX2dX dT (6.3)
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U 2 = f (G2 1F2 + G 2 2F2 + G2 3F3 )dXldX2dX3 dT (6.4)

U3 = f (G3 1F3 + G3 2F 2 + G 33F3 )dXtdX2dX3 dT (6.5)

The displacement functions as derived here satisfy initial con-
ditions since they are equal to zero when t = 0. If a dip strike
is considered F, and F2 are equal to zero and F3 is obtained from
Equation (I I-) such that

U, = f G1 3F3 (t)dXldX2dX3 dT (6.6)

U2 = f G23 F3 (t)dXldX2dX3dT (6.7)

U33 3(t)dXdX2dX dT (6.8)

VII. DISSCUSSION OF RESULTS. The rather crude model for
describing an earthquake as developed in this dissertation does
contribute to an understanding of observed seismograms. The
computed results which were obtained by a program by Council (1)
were for a ten second period of time which is consistent with
the period of time that the maximum effects of an earthquake are
observed in which the maximum accelerations associated with a
slip strike would increase from zero to .5g with reversals of the
direction of the acceleration occurring at random time intervals.
Figure 7.1 represents a time history of the accelerations associ-
ated with a dip strike as obtained by using Equation (1.1.) for
the displacement function equations, Equations (6.6), (6.7) and
(6.8). Time histories of the accelerations obtained from Equations
(6.6), (6.7) and (6.8) for a ten second period of time are
displayed in Figures 7.2, 7.3 and 7.4. A comparison of these last
three figures with the one previous show the effect of the medium
through which the disturbance is propagated. A one second time
history of the accelerations as obtained from Equations (6.6),
(6.7) and (6.8) are shown superimposed in Figure 7.5. The tendency
for a lack of coherence of time histories of the accelerations
along each of the coordinate axis can be considered as a reflection
of the surrounding medium being prestressed and is consistent with
observed seismograms. If instead, these time histroies for the
accelerations along each of the coordinate axis were considered to
be accelerations resulting from multiple foci, then this would
help to explain some of the complexities of observed seismograms.
The amplitudes of the frequency spectrums of the accelerations
along each of the coordinate axis are shown in Figures 7.6, 7.7
and 7.8. The differences between the results presented here and
actual frequency spectrums associated with free fields is an
indication that a frequency dependent attenuation factor should
have been included in the equations that were derived.
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Although a dip strike was considered in this discussion,
the equations can be modified such that a slip strike or a
combination of a slip strike and a dip strike are considered.
Also, a multi foci situation can be considered which is more
consistant with an actual earthquake.
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AN ITERATIVE ALGORITHX1 Fr, CA:CU:ATI%;c PCTENTIALS
NEAR TWO PARALLEL PLATES F E.AL WDTH, PAT Il

J. Barkley Rosser
Mathematics Pesearch Center

University of Wisconsin, Madison, Wiscons

ABSTRACT. This is an extension of the report "An itrai .
calculating potentials near small groups of finite c.ar...
Rccser, that was nresented at th. Sevente-nt Conferenceof
in 1971. Since t'e first re-rt, it has been to:; . ......o..
convergenze .f the it-it,- t is reported how to ce-
hi the £-a,.yr.. .. it is aisD shown how to u,-, te st r -

reduce the ah--- Df -'cuain

1 . S ro:d approximations for the potentials arc _- f - e
arrangements i;::. In many nieces of equipment in electron t -.n
passing a plan through the middle of the condenser and solvinq for a
sional noctential in this nlane. In ['-, an iterat 1ve r .c. l..r eas cx
which can e used to cot the recuired 2-dimensional notential in t- ..: nei h,-r-
hood of a finite n%'mber of finite charged plates, however they are a'rnq

In the electrostatic lenses of cathode-ray tubes, one has the -.arti-'-ur' v
simple case of two parallel plates of equal width, directly opposite each ochr.
One can find the potential by elliptic integrals; see [21. Cne can also ,et a
numerical approximation by calculations with a singular integral; soe [31. 7

iterative procedure of [11 was tried for such a condenser in which the senara-ion
of the plates was 1.25 times the plate width. The convergence was very last, re-
quiring about 1/10 the computational labor of either of the methods give, in [21
or [31.

In this part, this situation of parallel plates is studied for general sepa-
ration ratios; the separation ratio is the ratio of the distance betwreen the
plates to the width of the plates. If one has a solution for a condenser of one
size with a given separation ratio, oi._ can get a solution for a larger or smaller
condenser with the same separation ratio by using the obvious scale factor.

It will be shown that the iterative procedure of [] converges for each sepa-
ration ratio. A formula is determined which gives the rate of convergence in
terms of the separation ratio. As the separation ratio decreases, the rate of con-
vergence also decreases; also, the calculations become more extensive for each
step of the iteration. For small separation ratios, the calculations can be con-
siderably abridged by using the Fast Fourier Transform. Details will be given.
Also, for small separation ratios, the rate of convergence can be much accelerated
by using the E-algoritihn. Details will be given. Because of these improvements,
the iterative procedure of [11 appears to be xelatively efficient, whatever the
separition ratio.

I wish to acknowledge the help of H.-S. Hung and T.-J. Huang in the prepara-
tion of this part, and the assistance of Dianne Hollenbeck in the programming and
calculations.

Sponsored by the United States Army under Contract No. DAAG29-75-C-2024.
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Calculations were made, and are summarized, for each of the separatic
ratios 1.25, 0.5, 0.2, 0.1, and 0.01. As a check, for each of these, the key
results were verified by the methods of [2].

2. BASIC IDEAS. It will be good first to review some of the ideas of [l).
In space, we have the two parallel plates. We pass a plane perpendicular to both,
and seek a 2-dimensional potential in the plane. In the plane, the plates appear
as two parallel straight line segments, as in Figure 2.1. Here we have two plates,
each of width Z. , separated by a space of 2 units. The separation ratio is 2/i.
if a different size is required, one scales up or down. lie wish to find a 2-
dimensional potential in the plane of which Figure 2.1 is a part. The actual

YA

0

Figure 2.1.

plates are considered to extend indefinitely in both directions in the direction
perpendicular to the plane of Figure 2.1.

Since the plates are conductors, the potential must be constant along each
plate. We also require a zero potential at infinity, from which we conclude that
the potentials along the two plates must be +C and -C respectively. If one had
preferred potentials of +K and -K , one could multiply the potential for the
present case by K/C at all points.

So, we wish to find a real function X which will be continuous in the en-
tire plane, and harmonic except on the two "plates"; we further require that X
approach zero as X2 +- y2 goes to infinity, that X be +C along the upper
"plate", and that X be -C along the lower "plate", with C jO 0

We introduce the complex variable

z - x + iY
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we will define X as the real part of a certain function of z . In the z-plane
the upper "plate" is the line seqment connecting the two points (± £ + i) and the
lower "plate" is the line seqment connecting the two points (±2 - i).

The discussion in [11 leads to the following approach. Define w(s) for
complex s by

1
s = w+- , (2.1)

w

1wj < 1 . (2.2)

Except for s on a cut consisting of the line segment from -2 to +2 ,
(2.1) and (2.2) define w as a single valued analytic function of s . The function
w(s) maps all of the s-plane except the cut conformally in a one-to-one manner into
the interior of the unit circle in the w-plane. We shall shortly consider the de-
tails of this mapping. In particular, if s approaches the point 2 cos e on the
cut from above, then w approaches e -ie , with 0 < 0 < 7 , from the interior of
the unit circle. If s approaches the point 2 cos T on the cut from below, then
w approaches eiO from the interior of the unit circle.

Let S(s) be a function with the properties:

6q(S(s)} is harmonic except on the cut; (2.3)

{S(s)} is continuous everywhere; (2.4)

Lim [{S(s) - S(s+a)} = 0 for each a . (2.5)

Let us suggest

R[S(4(z-i)/Z) - S(4(z+i)/Z)} (2.6)

as the first approximation for the function X that we seek. By (2.4), (2.6) is
continuous in the entire plane. By (2.3), (2.6) is harmonic except on the two
"plates". By (2.5), (2.6) goes to zero as x2 + y2 goes to infinity. What we lack
is that (2.6) should be constant along each "plate".

Can we find a correction for (2.6) that makes it more nearly constant along
each "plate"? A way to do this is as follows. We transform the z-plane, except for
the upper "plate", conformally into the interior of the unit circle in the w-plane.
This is done in two steps. First transform the z-plane, minus the upper "plate",
into the s-plane, minus the cut, by putting

Z =is + i (2.7)

4

Then transform the s-plane, minus the cut, into the interior of the unit circle in
the w-plane by (2.1) and (2.2).

Under this transformation, the function (2.6) goes into a real function
T(r,O), for 0 < r < 1 . in the w-plane, where we are taking

ie
w-re
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We have that T(r,O) is continuous for 0 < r < 1 . Since a harmonic function goes
into a harmonic function under a conformal map, T(r,O) for 0 < r < 1 is harmonic
except on the image in the w-plane of the lower "plate".

By continuity, we can extend T(r,e) to r = jwi = 1. At w = e i, for
-w < 6 < w, we assign T(1,0) the value

8
6?{S(2 cos 0) - S(2 cos e + i)}

9

This makes T(r,O) continuous for 0 < r < 1. Also, T(l,e) is an even function of
e , continuous, and with period 27r.

Expand -T(1,0) in a Fourier series

-T(I,0) = 8 0 + X (8 cos ne + y sin no ). (2.8)
n=l

As T(l,o) is an even function of 8 , the y will all be 0 . We have of course

n= - .1 f" T(1,8) cos no dO

IT

for n > 1. As T(lO) is an even function of 6 , we have for n > 1

n= fiT T(1,0) cos nO dO . (2.9)
n 7r 0

Let, temporarily,

nulw) = 8n w (2.10)
n=l

Then obviously u(w) is analytic inside the unit circle and continuous inside and
including the unit circle. Also u(O) = 0 . We have of course

Go
d{u(e i)} = I 8 cos no . (2.11)

n=l
So, since the yn are 0 , we have by (2.8)

T(1,6) + 61{u(eio)} = -80  (2.12)

for all 0 . That is, u(w) has completely smoothed out the fluctuations of T(r,e)

around the unit circle. If we transform T(r,O) + 6[u(w)} back to the z-plane, we
have something which is constant along the upper "plate". Of course, we have pro-
duced additional fluctuations along the lower "plate". These reflect the fluctua-
tions of u(w) along the image in the w-plane of the lower "plate". But here
lw < 1 , so that from the definition (2.10) one would expect smaller fluctuations
than those we smoothed out for lw = 1

Transforming u(w) back to the z-plane gives

u(W(4(z-i)/L)) e n n (w(4(z-i)/t))n  (2.13)
n=l

of course, by (2.10).

This suggests using

S(s) - S(s) + u(W(s)) (2.14)
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as an improvement for S(s). We verify that S(s) satisfies (2.3) and (2.5) by
appealing to the properties of u(w) cited below (2.10). Specifically, we verify
(2.3) since for s not on the cut we have lw(s) < 1 , so that u(w(s)) is ana-
lytic. Hence d?{u(w(s))} is harmonic. We verify (2.5) since w(s) goes to zero
as s goes to infinity. To verify (2.4) for S(s), the only difficulty is along
the cut. But at s = 2 cos e along the cut, we have

±ie
w(s) = 

e

so that

{w~s = I n cos nO = -T(,) -0

n=l
So things are O.K.

Now the new approximation for the function X that we seek is

6Z{S(4(z-i)/k) - S(4(z+i)/t) } + 6{u(w(4(z-i)/Z))} - R{{i(w(4(z+i)/Z))}. (2.15,

If we should leave off the final term of (2.15), the result would be constant along
the top "plate". For reasons given above, we expect the fluctuations caused along
the top "plate" by the final term of (2.15) to be less than we had for (2.6). For
analogous reasons, we expect that the final term of (2.15) will considerably reduce
the fluctuations along the lower "plate".

If this is really so (and we will prove that it is), we have improved the situi
tion. Then, of course, we should repeat the operation, to try for further improve-
ment. So, again, we transform the z-plane, except for the upper plate, conformally
into the interior of the unit circle in the w-plane. As before, the first term of
(2.15) goes into T(r,6). The second term of (2.15) goes into s1[u(w)}. The third
term of (2.15) goes into

1 8
-L{u(w (w + L+ -i))1. (2.16:

We now extend to jwj = 1. For w = e , the first two terms of (2.15) to-
gether go to -S a because that is how we chose u(w). So, for w = eiO, the
entire formula (9.15) goes to

8
-0 - Qfu(w(2 cos e + *ri))} . (2.17:

We expand the negative of this in a Fourier series

0 + cos nO
n=l

(as before, the sine terms drop out) where for n > 1

= - f- j {u(w(2 Cos 8 + - i))} Cos ne d.n W
In (2.10), the n s are bounded (by (2.9)). Also

n

Iw(2 cos e + i)l <I 1

by (2.2). So the terms in the series for
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6{u(w(2 cos 0 8Ti))}

are bounded by a geometric series. Hence we can interchange the order of summation
and integration, which gives us for n > 1

n 0 f' (w(2 cos e i)) m cos nO dO. (2.18)

We could now define a u(w) in terms of the n analogously to (2.10). Then,
analogously to (2.14), we could get a still better approximation by using S(s) +
u(w(s)).

We proceed in this way, successively, until we get to an approximation that is
as near constant as we wish along each of the two "plates". The important thing to
observe is that each new set of a's is defined in terms of the previous set by
(2.18). Hence, we can write a computer program to calculate successive sets of a's.
That is, we can do that as soon as we learn enough about the function w(s). We
turn now to that.

3. PROPERTIES OF w(s). Somewhat more generally than (2.1), we define s as
a function of w by

S = W + 1 (3.1)w

for the entire w-plane. Clearly this defines w as a double valued function of s
by the equation

w = ifs - (s2 - 4)1}. (3.2)

To make this single valued, we make the determination

(s 2 - 4) = iv5 when s = i ; (3.3)

it suffices then to make suitable cuts in the s-plane. Two choices are useful: a
singly connected cut (SCC), and a doubly connected cut (DCC); see Figure 3.1.

With SCC, (s - 4) is an odd function of s

((-s)2 _ 4) = -(s2 - 4)1 for SCC. (3.4)

With DCC, (s 2 - 4) is an even function of s

((-s) 2 
- 4) = (s - 4)1 for DCC. (3.5)

Since (s2 - 4)1 is single valued if we make the determination (3.3), whether
we use SCC or DCC, we see by (3.2) that w(s) is likewise single valued. However,
the mapping from the s-plane into the w-plane induced by w(s) will be quite differ-
ent, according as we use SCC or DCC.

First, let us see what we get for SCC. By (3.4) and (3.2), w(s) is an odd

function of s . That is

w(-s) - -w(s). (3.6)

From (3.3), we conclude
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Singly connected cut

-2 2

Doubly connected cut

Figure 3.1.
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w(it) = L(t - /tf + 4) for t > 0 . (3.7)2

Then by (3.6), we have

w(it) = -(t + /t+ 4) for t < 0 (3.9)
2

We easily conclude

w(s) = (s - 4) for s > 2 , (3.9)

whence by (3.6) we get

w(s) = (s + T77 4) for s < -2. (3.10)

If we put

ie
w = re (3.11)

into (3.1), taking r fixed with 0 < r < 1 , and letting e vary, we see that s
lies on the ellipse

1 1
s = (r + -)cos e - i(- - r)sin e . (3.12)

r r

This has foci at -2 and +2, and center at the origin. The major axis lies along
the real axis and is of length 2(r + (l/r)). The minor axis lies along the imag-
inary axis and is of length 2((l/r) - r).

Thus we see that the interior of the unit circle in the w-plane is mapped into
the s-plane minus SCC. In other words, with SCC, (3.2) defines a function which
carries the s-plane minus the cut into the interior of the unit circle in the w-
plane. That is, with SCC, the function defined by (3.2) is the same as the one de-
fined by (2.1) and (2.2).

By (3.2), we see that d w(s) i 0. So by the usual theory of conformal mapping,
Sds

the map of the s-plane, minus SCC, into the interior of the unit circle in the w-
plane is one-to-one and comformal.

To see what happens on the cut SCC, note by (3.12) that as w goes around the
circle of radius r counterclockwise, s goes around the ellipse clockwise. Let
r be very close to 1 . Then the ellipse becomes very thin, practically indistin-
guishable from the cut SCC. Taking the limit as r - 1 , we see that if s ap-
proaches the point 2 cos e on the cut SCC from above, with 0 < 6 < w, then w
approaches e-ie from the interior of the unit circle. If s approaches the point
2 cos e on the cut SCC from below, then w approaches eiO from the interior of
the unit circle.

We will usually be operating with the cut SCC, so that we will be using w(s)
as defined by (2.1) and (2.2). However, occasionally we will wish to extend w(s)
across the cut SCC from above. To do this, we operate with the cut DCC. Let us in-
vestigate what happens in this case.

When we use DCC, it turns out that the s-plane minus the cut DCC is mapped into
the lower half of the w-plane, one-to-one and conformally. For example, we have

w(it) - L(t - v + 4) all real t . (3.13)
2
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Thus, the entire imaginary axis in the s-plane goes into the negative half of the
imaginary axis in the w-plane.

More generally, let (3.11) hold with r > 0 and 6 fixed with -7/2 < 6 < 0
Put s = x + iy in (3.12) and conclude

x 1= r+ , (3.14
r

y 1
= r - -- (3.15sin 0 r

So s is on the hyperbola

2 2x v - 2=1. (3.16

4 cos28 4 sin2e

By (3.14), x is positive, so that s must be on the right branch of the hyperbol
If s is on the upper part of the branch (that is, y > 0), then r < 1 by (3.15
since -r/2 < 6 < 0, so that w is inside the unit circle. If s is on the lower
part of the branch, then r > 1 , so that w is outside the unit circle. We have
w hitting the unit circle, w = eiO, when s = 2 cos 6 . If we now hold 6 fixed
with -7 < 6 < -1/2, then similarly s will be on the left branch of the hyperbola
(3.16).

The foci of the hyperbola (3.16) are s = ±2. So we verify that the s-plane
minus the cut DCC is mapped into the lower half of the w-plane.

Let us recall the key formula (2.18). There, of course, we were using the cut
SCC. We wish a formula for

8 m
6Z(w(2 cos 6 + - i))m} (3.17

for 0 < 6 < 7 . I wish to express my appreciation to Dr. H. -S. Hung for the
following derivation.

We take s = x + iy , and undertake generally to find w(s) = r ei e with
0 < r < 1. This satisfies (2.1) and (2.2), so that we get

x = r + > 0, (3.18
cos 0 r

Y = r - 1 < 0 . (3.19

sin 6 r

Subtracting these gives

2
r 2 .(3.20x -

Cos 0 sinS

If we square (3.18) and (3.19) and subtract, we get

2 2X 2 Y 1. (3.21

4 cos 4 sin28
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This gives

4 2 2 2 2
4 cos 0 - (4 + x + y )cos20 + x = 0

So

2 + 2  2~ V' 4 2 4 2)2 16 x2

Cos28 4 + x 2 ++ 
( + x + -

8

If we use the + sign above, then for fixed x and very large y , cos 2e
would be greater than unity. So for very large y , the minus sign is required.
However, cos 8 varies continuously with y for fixed x . AS

2 2 2 22 2 2

(4 + x + y2) _ 16x 2 = (x2 + y _ 4)2 + 16y2

we see that continuity requires that we use a minus sign for all y . So

2 2x2

cos 0 =
2 2 ¢ x224+l2

x(
2 + y - 4)2 + 16y

By (3.18), x/cos 6 > 0 . So

x + X y + 4 + (x2 + y - +42 16y (3.22)

Remembering that y/sin e < 0 by (3.19), we get by (3.21)

2 2 2

If x + y is less than 4 and 16y 2  is very small, there can be serious
cancellation of significant figures in using (3.23), and one would do better to use

Y- . (3.24)

x2  2 2 2 + 2
+ x + (4  y 2  16y

We now undertake to evaluate w(2 cos 8+ -i). Here the is a parameter in
the s-plane, and should not be confused with an angle in the w-plane. So we try to

find r and I so that

8 -i

w(2 cos 6 + i) = r e

In the analysis above, we take

8
x - 2 cos , y

So (3.20) becomes
Li
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r cosO 4 (3.25)

C os

for the evaluation of this, we use (3.22) to get

20 2 2
cose 8 sine 8 sin a 16
cos 1+ 2 2 + 2 2 + - (3.26)

Co;2 2 2 2

and we use (3.23) and (3.24) to get

4 2 sin 20 8 sin2@ 02 16

sin - sin + -i2 +- (3.27)

if 16 > Z2 sin 2 , and

4 -4
(3.28)

k sinG sn20 sn20 - 2

= 2 C 2 - 2 + .2

2 2 2Z

if 16 < Z2 sin 2 . Then (3.26) gives

Cos = Cos a (3.29)

4. + 8 sin 2  / + (V 8 sin 2 e 2 1
+ V 2 2 + 2 2 2

This gives us finally
8

R{tn(w(2 cos 6 + 2-i))} = 2n r (3.30)

6{(w(2 cos 6 + 8 i))m, = cos m . (3.31)

4. A CHOICE FOR S(s). For the S(s), that we discussed in Section 2, let

us propose

S(s) = tn(w(s)) . (4.1)

To make this single valued, we choose the branch of the £n such that
tn(w(3)) = n((3 - A)) (see (3.9)) and make a cut leftward along the real
s-axis from s -- 2

Obviously, WNS(s)} is harmonic (and hence continuous) everywhere except
on the cut left fron, s = 2. As s approaches the part of the cut from s = -2
to s = 2 , w(s) approaches the unit circle, and hence 61(S(s)} approaches 0

continuously. If s0 < -2, then by (3.10) PR£n(w(s))} approaches £n(-zl(s 0 +
2-

/z - 4)) continuously as s approaches sO 0 So W{S(s)1 is continuous every-
wh2re,verifying (2.4).

One can continue £n(w(s)) analytically downward across the cut left from

a = -2. Of course, the continuation will fail to agree with the value we assigned
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to £n(w(s)) below the cut. Then d{£n(w(s))} will be harmonic for the contin-
uation. It will take the value in r, with r given by (3.20), using the values

given in (3.22) and (3.23), because we continue 2n(w(s)) by first continuing

w(s), which encounters no difficulties at the cut, and then taking in of it.

But the continuation of r below the cut is the same as was assigned. So

IR{tn(w(s))} proceeds harmonically across the cut. Thus we have verified (2.3).

For s very large, w(s) is very close to i/s , by (2.1). So, though
£n(w(s)) and kn(w(s+±)) could differ by nearly 2wi for large s ( if s is

below the cut and s + a is above it), Wk{n(w(s))} and 6?{£n(w(s+a))} must be

nearly equal. So we verify (2.5).

So our first approximation for X(x,y) is 6{V(x + iy)} , where
_______ 4(z+i).

V(z) = tn(w(4 (z i))) - n(w( 4  ) (4.2)

Now, as in Section 2, we transform the z-plane into the w-plane by first using

(2.7) and then (2.1). We then continue out to the unit circle in the w-plane.

On this, we get

9£n(w( 4(z-i) = {£n M I

which is 0 because w is on the unit circle. So T(l,e) is -6?(Xn(w(2 cos8 +

8i))}, which we can calculate by (3.30). Indeed, by (3.30), T(1,7-6) = T(l,G).

So, by (2.9), the 8n are zero for odd n . So we dispense with them altogether,

and define 8( 0) to be S2n - That is, by (2.9)

80) f I n(w(2 cos 0 + - i))}cos 2nedO (4.3)
0

for n > 1 . Then

U() = 8
( C) W2n

n=l

If we follow through our previous discussion to (2.14), we see that we take

S(s) tn(w(s)) + 8(0) (w(s)) 2n (4.4)
n=l

as the improved S(s)

Recall that we proceeded to successive improvements. We have dispensed with

the 8 for odd n , and taken 8( 0 ) to be 82n . So (2.18) takes the form

n --2 0) 8 f 64((w(2 cos e + . i))2m}cos n6d6.
n m=l m 0

This reminds us of (3.31). Recall that cos 2m8 is a polynomial in
(cos j)2 . So, by (3.29), cos 2m6 is symmetric about 0 = n/2 as a function

of 0 . So, by (3.31), we conclude that dl{(w(2 cos 8 + 8 i))2m} is symmetric

about 0 - n/2. Hence 8 is 0 for odd n . We dispense with them altogether,
- n

and define 81 to be 82n . So we get finally for n > f
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(1) 2 2 (0) f {RW(2 cos a + 8 2m cos 2nd. (4.5)
n iT m

m=l 0

This gives

(0) (1) 2n(46
S(s) = Zn(w(s)) + ( (  + a )(w(s)) (4.6)

n n nn=ln

as a still further improvement of S(s).

By now a pattern has emerged. Define

nm = f 6?{(w(2 cos 8 + 8 )2m}cos 2nede. (4.7)

0i) (0)

Define S by the iteration that 5 is given by (4.3) and for n > 1
n n

c_(A) (4.8)

n + I ) =  = m Yn,m
m=l

(see (4.5)). Define for n > 1
A

(A) = . an (4.9)
11=0

Then, for larger and larger A
00

Zn(w(s)) + I c ) (w(s))
2n

n=l
will be a better and better improvement for S(s) (see 4.6)).

We define for n > 1

(A)
a =Lim a , (4.10)n n

provided that the limit exists (and we will show that it does). Then we take

U(s) = Zn(w(s)) + Ia (w(s))2n (4.11)
n=l

as the ultimate improvement for S(s), provided the ser.Ls on the right converges
(we will prove that it does, and indeed uniformly in s). So we will take
X(x,y) as ENW(x-iy)} , where

W(z) = r- U(4(z+i)/Z) (4.12)

We note that ?{ut_,) -unction of s , and 6NW(z)'} is an odd
function of z . We c-n ;..ts already set forth to conclude that
U(s) has the properti .4), and (2.5) that were postulated for S(s).
Hence X(x,y) is continuu < and y , is harmonic except on the two
"plates" and goes to 0 goes to infinity.

The crucial question .r x(x,y) is a non-zero constant C along
the upper "plate". If it is, Lhen it will be -C along the lower plate, since
e(W(z)) is an odd function of z
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By (4.3) and (4.9), we have for n > 1
(0) 2 [8

0( = 2f 6?(n(w(2 cos 0 + [ i))}cos 2nOdO. (4.13)0

(-I)By (4.9), a = 0 So by (4.9)

(A+1) (A) 8 (A+1) (.4a n a + 8n(4.14)
n n n

for A > -1 and n > 1 . Hence, by induction on A , we can prove by (4.8) that
A)

(A+1) = (0) (A) I (4.15)n n m I m n m
m=l

for A > -1 and n > 1

(A)
We will show that an goes to an with sufficient uniformity in n that

we can let A - = in (4.15) and conclude for n > 1

(0) + a (4.16)
n n f m Yn,m

m=1

Along the upper "plate" we have

z = i + it cos 8. (4.17)

So
-+i6

w(4(z-i)/Z) = e (4.18)
8

W(4(z+i)/w) w(2 cos E + - i) (4.19)

So, along the upper plate X is a function of 8 given by

x C(O) --6?(w(i + i£ cos e)}

ai cos 2m8 - dN2n(w(2 cos e + i) I
m=l

- a Rf((w(2 cos 8 + - i)) 2 m } (4.20)
m=1

Clearly C(8) is an even function of 8. So,

fI C(6) sin n~d8 = 0

-7r

f' C(B) cos n~dO = 2 f C(O) cos node
-it 0

By an analysis we carried out earlier, C(e) is symmetric with respect to 8
about the point e 1 /2 . So

2f" C(O) cos nede = 0
0

-228-

17!



for odd n . By (4.7), (4.13) and (4.20),
(0)

2f c(e) cos 2nede = (a - a -(0 ) a0 n n MI M Tn'm

for n > 1. So, by (4.16),

fTC() cos nede = 0

- Tr

for n > 1. Hence C(3) has a Fourier series expansion whose only non-vanishing

coefficient is that of the constant term.

Thus we see that (4.20) holds with a constant C for z on the upper
"plate". To show that C X 0 , we argue as follows. Suppose C = 0 . Then

?fW(z)} = 0 on the upper "plate", whence by (4.11) and (4.12) it must also be 0

on the lower "plate". As RNW(z)} is a harmonic function except on the "plates",

and approaches zero as z goes to - , 6?W(z)} must be identically zero. So

by the Cauchy-Riemann differential equations, W(z) is a constant, W .

But U(4(z+i)/Z) is analytic and single valued except on the lower "plate"

and its extension to the left. By (4.12),

U(4(z-i)/Z) = W + U(4(z+i.)/2)

So U(4(z-i)/Z) is analytic and single valued in the neighborhood of the upper
"plate". But in the neighborhood of the upper "plate" w(4(z-i)/") is single

valued as long as one stays off the "plate", whereas Zn(w(4(z-i)/)) will go

from one branch to another as one encircles the upper "plate". So by (4.11),

U(4(z-i)/Z) cannot be single valued in the neighborhood of the upper plate.

Thus we have our contradiction, and can conclude that C # 0 . Integrating

both sides of (4.20) from 0 to 7 gives

C f It f' zn 6n(w(2 cos 6 + 8 i))}de
i 0

_ fr {(w(2 cos 9 + 8 ) 2m}de. (4.21)m~l 0

The "C-test", to see if the calculation of the an has proceeded without

numerical mistakes, is to substitute a number of different values of e into the

right side of (4.20) and see if it takes the value C as given by (4.21), or by

one of the other values of 9 .

We might remark that if one gets the same value of C by (4.20) for all values

of 0, one has found the desired values of am , whatever might have been the

method of calculation; the desired potential will certainly be given by 6?[W(x+iy)}

(see (4.12)). If one gets nearly the same value of C for all values of 9, then

by the maximum principle 6?{W(x+iy)} will give a good approximation to the poten-

tial. If one gets nearly the same value of C for a considerable number of values

of 8, it is not likely that C would be far off for any of the other values of 0.

Thus, again by the maximum principle, it is likely that R(W(x+iy)} will give a

gocii approximation to the potential.
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5. THE FAST FOURIER TRANSFORM. In (4.13), we need to calculate an

approximation for

2n 2 fn J(O) cos 2nOdO. (5.1)
n IT10

Combining (4.7) with (4.8), we find again that we wish to calculate an approxima-
tion for (5.1).

Expand J(e) in a Fourier series,

J(0) = + 1 (8n cos nO + y sin n6)
n=1

for -n < e < n. In all the cases where we wish to evaluate (5.1), J() is an
even function. So the yn are all zero. Also, we have J(i-8) = J(6) , so that

On = 0 for odd n and 82m = Om for positive m . In effect, the On are
Fourier coefficients, and we have

J(0) = o + I 4n cos 2n6. (5.2)
n=l

We will find, for the J(e) 's that we are interested in, that the 4n 's
decrease rapidly in absolute value. Choose Q large enough so that

is negligible for purposes of computation. Then, to a high degree of accuracy,
() 1W j S8), where

J(8) = cos 2ne. (5.3)

n=1
Define

I I (2- - (5.4)
0k=0

One can verify that

I cos 2m6 cos 2n8 = Q8 (5.5)
0nm

for 0 < m < 0 and 1 < n < Q . So multiply botY sides of (5.3) by cos 2m8 and
apply the 7 operator. We get

n
1 " Jo(e) cos 2m8

for 0< m < R. As J(8) - JP () , we get

4M I 1(e) cos 2m(.6)

for 0 < m 0 . As the 4, are real, we have 4 -6?( , , where

- 1 J (k) 2mki/2 (5.7)

k-0

for 0 < m < 0.
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The Fast Fourier Transform (FFT) provides an efficient way to calculate such
sums as occur in (5.7). A collection of articles on the FFT is given on pages

312-382 of (4]. Amongst them, our reference (5] contains a useful discussion.

In one of our examples, we had to calculate m for m going up somewhat

in excess of 200. We took Q = 256, and the FFT resulted in a saving of computa-
tional labor by a factor of 10 to 20. Maximum efficiency results when one can
take 0 to be a power of 2 , as we did. A FORTRAN program for calculation in

this case is given in (6].

By Theorem 8.9, we will be able to show that

a) (5.8)

n=Q

can be made as small as desired by taking 0 sufficiently large, uniformly in ).

Take 0 large enough that (5.8) is negliqible for purposes of computation. As
(4.13) has the form (5.1), we conclude that

-0 (0) 1
(0) 1E 6?{= - (w(2 cos 9 + i))cos 2n8 (5.9)

n n =

for 0 < n < 0 , to a high degree of approximation. Thus we may use the FFT to
calculate approximations for the a (0).

n

Using (4.13) and (4.7) in (4.15) gives

(a+l)2, Pir 8MA 8 2m
=- dN(n(w(2 cos 8 + 8 i))} + c, L (w(2 cos +i)) os 2nOdO

n - 0 m=l m

The interchange of order of summation and integration is justified because the

M are bounded (see (5.8)) and lw(2 cos e + 8 £) I is less than unity uniformly

by (2.2). As (5.8) is negligible for A + 1,1 we can argue as before to con-

clude that

S(X+l) _ 1 {(wI(2 cos+i))+ (co cos 2n.

to a high degree of approximation. Using the definition in (5.9), we write this
as

(A+l) -(0) + 1 6)8(w(2 cos 0 + c2m o 2n@.
ai cos n

8

But (5.8) is negligible, and Iw(2 cos 0 + E i)I < 1 , so that we get

1 -((A) 8 2m
(+) -(0)+ f (w(2 cos 0 + - i)) cos 2nG.
nn 11 L-

Let us define

{= {(w(2 cos 6 + coi)? cos 2ne . (5.10)
n

Then we have finally

-X(0))- (5.11)
a n a() n =- Yn,m
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In this, replace X by X-1 , and subtract from (5.11). By (4.14), we get

n M n (5.12)
n m M m n,mM=l

This is quite similar to (4.8). Note that we are not claiming that Yn,m 5
Yn m - We merely point out that the use in (5.12) gives a good approximation.
AnA, of course, the Yn,m can be calculated very efficiently by the FFT.

(0)Our method of operation is first to compute approximations for the S n
We do this by (5.9), since 8 0)= a40) by (4.9). Then we use (5.12) to calculate

for larger and ic.rger X. Then we get the a. for larger and larger X
by (4.14).

Of course, this is done only for n < Q . However, because (5.8) is negli-
gible and Iw(s)I < 1 , this gives good approximt'ions for U(s) by (4.11).
Then we get X(x,y) by taking R(W(x,iy)}, with %-;(z) given by (4.12).

Although we have shown that (5.12) gives a good approximation for
the buildup of the a(X~ by use of (4.14) allows the possibility of accumula-

tion of errors, possibly to a harmful degree. So there remains a question of
how accurate are our final approximations for the an " One can use the methods
of Section 8 to show that we can come as close as we wish to the values of the
an, for n < Q, by taking a large enough Q. However, the analysis is quite com-
plex. One would wish to apply the C-test (see above) at the end, to make sure
one had not committed numerical mistakes. But if we get good results from the
C-test, we are assured that we have good approximat.:Is for the an . For the
five computations that we tried, we had gool success with the C-test. For further
confirmation, we checked the results by the method of [2].

6. COMPUTATIONAL RESULTS. We postpone the proofs of convergence, and that
sort of thing, to Section 8. Here we will summarize some of the numerical results
which we obtained.

For the early computations, we had not yet obtained the information about
convergence, etc., which is in Section 8. In order for (5.7) to give adequate
accuracy, we have to choose Q large enough so that

n=Q

is negligible for purposes of computation. Before we had learned our rates of
convergence, we had no basis for choosing R . So at first we just choose Q
quite large, and hoped for the best. Subsequently, after we learned the rates of
convergence, it turned out that we had taken S larger than need be in all but
one case; there it seemed about right. This did not invalidate any of our results,
but just meant that we had done more calculation than was necessary. Even without
knowing the rates of convergence, the success of the C-test would have assured us
that we had not taken too small a value for Q .

Our first calculation was for I = 1.6. Table 6.1 contains values of var-
ious al's. Ile will derive (8.34) to give bounds for the am(O). A list of
these bounds, rounded to two significant decimals, is given in Table 6.1. We
note that by (8.34)
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a () < (5.8 ± 0.05)× 10 - 1 5

As the individual terms of the sum (5.9) are not much less than unity, this means
that in calculating a(0) at least twelve or thirteen significant decimal digits,

10
perhaps more, must be lost off the front due to cancellation. At best, this
would leave very few correct significant digits, even in a double precision cal-
culation (none at all in a single precision calculation).

In fact, J(0)j is likely a good bit smaller than 5.8 x 10-15. Although10
double precision was used in the computation, it is likely that the combination of
cancellationsand round off errors is so great that the approximation calculated
for a (0 ) and shown in Table 6.1, has not a single significant digit correct.

10

To get some notion of the size of round off error, the computation was re-
peated with single precision. By comparison with the double precision values,
the amount of cancellation and round off error combined for the single precision
calculation could be determined. One would suppose that the double precision
calculation is affected with similar errors.

The single precision approximation for a(0) had five significant decimal
digits correct, for a 0 had four, for a(0) had one, and for all other a(0 )

23 m
had none. The approximation for a(0) had the right sign and the right order of

4magnitude, but the approximation for (o) had neither the right sign nor the
right order of magnitude. From this, one is tempted to conjecture that the ap-
proximations calculated by double precision and listed for a(0) and a(0) in

a8 9Table 6.1 may each have one, or possibly two, significant decimal digits correct.
This order of accuracy is corroborated by the C-test and the comparison with the
values computed by elliptic integrals (as described in [21).

At the beginning, we had no notion how fast a mX) converges to am. So the
8 ) were computed for X < 11. As it turned out, X < 7 would have been
entirely adequate. Some values of 6 m are shown in Table 6.2.

It will be noted that while the bounds given by (8.34) and (8.36) in Table
6.1 are appreciably too large, they are not ridiculously so. On the other hand,
the bounds given by (8.47) in Table 6.2 are preposterously too large. However,
they suffice to assure that a(X) converges to an , for 1 < n < .

n

The values of an were computed from

a= M 8(A), (6.1)

X=0
which follows from (4.9) and (4.10). The 8" ) for this purpose had been com-
puted by (5.12), starting from (5.9); this latter gets us started since $ (0 ) =
(0) n

The Yn,m had been computed by (5.10). This raises the question of what
sorts of errors can arise from the use of (5.10). Of course, we verified at the
end, by the C-test, that we had arrived at good values for the an • However,
during the course of the calculation, it is well to be assured that we have taken
Q large enough so that we will not be disappointed by the C-test at the end of
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the calculation.

If we calculate the yn,m by (5.10), then using (5.12) is exactly the same
as using (5.11). So it does not matter if (5.10) gives good approximations for
the Yn,m individually. Whether or not (5.10) makes the Yn,m good approxima-
tions for the Yn,m individually, if one uses (5.10) and then uses (5.12) one is
in effect using (5.11); if (5.8) is small uniformly in X , then (5.11) gives a
good approximation.

The analysis above presupposes that there are no cancellations or round off
errors made in the use of (5.10). Any such errors made in the use of (5.10) tend
to invalidate the equivalence of (5.12) with (5.11).

As the EU) decrease rapidly with X , one can allow the percent of error
of the A) to increase as A increases without producing much error in the am
by the use of (6.1). Thus, one is less concerned with the accumulation of cancel-
lationsor round off errors in using (5.10) than in using (5.9). The accumulation
of cancellations and round of f errors ought to be about the same for both, and hence
of less consequence for (5.10). Interestingly enough, the cancellation appears
to be less with (5.10) than with (5.9), especially for large n . The reason is
that the term G{Zn(w(2 cos 6 + B i)) in (5.9) does not vary greatly, so that one
is adding nearly equal terms, which is conducive to cancellation. However, the
term (?{(w(2 cos e + 8.i))2m} in (5.10) varies much more, especially for large m.
Thus a few terms predominate, and the cancellation from these few terms is not too
severe.

This was brought out most strikingly in the single precision calculations
which we performed. While cancellationsand round off errors left no correct sig-
nificant digits in a(O) for m > 4 , the Y4 m each had at least three correctM
significant decimal digits. All the Y6 m haA at least one correct significant
decimal digit except for m = 0 . Thoug " a(0) probably has no correct significant

10digits even in a double precision calculation, the single precision calculation of
the Yl0,m gave at least one correct significant decimal digit for both m = 9
and m = 10.

In any case, as we noted above, the values of am which were computed checked
out very well in both the C-test and comparison with the values calculated by use
of elliptic integrals (as described in [2]). Incidentally, the value of C is
approximately

1.6772 45213 00067 57.

The next case considered was Z = 4. A first calculation was done with
assorted large values of 0 , some running into the hundreds. It was realized
about then that this was not advisable, and the computation was repeated, this
time with Q = 20 uniformly. The results are summarized in Table 6.3. From
the values of (8.34) and (8.36), it is clear that indeed 0 = 20 is adequately
large, even for a double precision calculation, such as we were doing. Although
we have listed approximations from the calculated values of a(0) and a form m
m = 16 and m = 17 , it is not too likely that they have any correct significant
digits. The values calculated for m = 18 and 19 can almost be guaranteed not to
have any correct significant digits, and it seemed pointless to list them.
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The 8 m were computed for X < 21. It turned out that A < 14 would have
sufficed. Some values are shown in Table 6.4. As before, the bounds given by
(8.47) are worthless, except to prove convergence in (6.1), which is equivalent
to (4.10).

Table 6.4

Values for f = 4.0

1 5 9

1 -6.4 x 10 3  3.2 X 10 - 7  1.2 x 10 - 1 2  1.8 x l0 - 1

5 -1.9 X 10 - 7  2.5 x 10 - 1  -3.9 x 10 - 1 7  l.1 X 10 -

9 -5.7 X 10- 1 2  7.4 x 10 - 1 7  -1.1 x 10 - 2 1  7.0 X I0 - 4

12 -2.3 x 0 - 15 3.0 X 10 - 0 -4.6 X0 - 2 5  8.8 Xl0 - 5

15 -9.2 X 10 - 1 9  1.2 X 10 - 2 3  -1.9 X 10 - 2 8  1.1 x L0- 5

18 -3.7 X 10 - 2 2  4.9 X 10- 2 7  -7.5 X 10 - 3 2  1.4 x 10 - 6

21 -1.5 x 10 - 2 5  2.0 x 10- 3 0  -3.0 X 10 - 3 S 1.7 X 10- 7

The C-test and comparison with values calculated by elliptic integrals cor-
roborate the accuracy of the am . The value of C is approximately

0.96265 43980 34667 78

In Tables 6.5, 6.6, and 6.7 are given selected values of the (m0 ) and am
for I = 10, 20, and 200 respectively, with bounds calculated by (8.34), Theorem
8.10 and Theorem 8.11. For these tables, use of (8.36) to get bounds for I aml
is not possible. It will be noted that Theorems 8.10 and 8.11 give much poorer
bounds. However, except for the case k = 200, Theorem 8.10 is not too bad. For
example, for both Z = 10 and L = 20, one can show by Theorem 8.10 that a larger
value was used for . than necessary.

For I = 10, we took Q = 60. However, Q = 30 would have been more than ade-
quate for a double precision calculation, such as we made. For a single precision cal-

culation, n = 12 would have sufficed. The S() were computed for X < 61. For
double precision, A < 32 would have been quite adequate, and for single precision

a good bit less would have sufficed. The value of C was approximately j
0.48401 62679 54256 77
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For I = 20, we took Q = 100. However, 0 = 40 would have been more than

adequate for the double precision calculation we made, and Q = 16 for single

precision. The BM) were computed for X < 101. For double precision, X < 64
would have been quite adequate. The value of C was approximately

0.26894 13477 20025 97.

For £ = 200, we took Q = 130, which was hardly any too larqe) for double
precision. A special triple precision computation was made of a )m , using Q =
256 and the FFT. The m were computed for X < 300. This turned out not to

be enough, and it was extended to A = 550, which apparently sufficed. We say
"apparently", because the C-test did not work out quite as well as for the smaller
values of 9 . However, the C-test worked well enough for us to feel that the

value of C is approximately

0.03068 67555 10411

It appears that one cannot have much confidence in the values of the am beyond
the fifteenth decimal. Whether this means we should have gone to a still larger

value of A , or whether it merely reflects a large accumulation of round off

error from an extended calculation is not clear. As usual, the bound (8.47) is of

little value. According to it, one would have had to carry X past 2500 to begin

to get the am correct to more than fifteen decimals.

One can also wonder if we should have used a value of Q greater than 130.

The approximations shown for a(0 ) in Table 6.7 were rounded from a triple pre-

cision calculation using 0 = 256. According to (8.34), this was a large enough

value of 0 even for triple precision. So we may have confidence in the values
listed for a(0), except for the latter digits of the last two or three entries.

From the liste% values of am , it appears that 0 = 120 would be more than ade-
quate for a double precision calculation of the a(O ) .

What of the other am ) , and of the am? By Theorem 8.10, we might have

needed to take 0 as large as 300. However, the bounds given by Theorem 8.10

appear to be quite excessively large. Certainly, if our value of 130 for 0 had

been seriously too small (like less than half enough), we could not have done as

well as we did on the C-test. Actually, our C-te t, though a bit disappointing,

was really fairly good. Fe shall present some other evi,!ence to '1qgest that
= 130 was adequately large. Indeed, one could likely have ta. 0 = 128 = 2

in safety, and hence been able to make good use of the FFT.

This evidence is based on certain properties which apparently all the se-

quences {4(0 )} and {am) have, whatever the value of X . However, the prop-

erties become much more prominent for the larger values of t.

To describe these properties, we make certain definitions. Let al,aa 3 ,..

be a sequence. We will say that am  is a local minimum if am < am_1 ana

am < am+,. We will say that am is T local maximum if am > am-, and am >

am+, . For each of the sequences fa( I and {ad shown in Tables 6.1, 6.3,
6.5, 6.6, and 6.7, the first term (for m = 1) is less than all the rest. We

will count it also as a local minimum; it is likewise a global minimum.
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In Tables 6.5, 6.6, and 6.7, only values of )are listed which
m oramaelsewhc

are either local minima or local maxima. We refer to these as local extrema.
Every local extremum is listed as far as the tables extend.

From the definitions just given, it is a triviality that in going from a
local minimum to the next local maximum, the terms increase mcnotonicallv/, and il.
going from a local maximum to the next local minimum, the terms decrease monoton-
ically. (It happens that in all our sequences, there are no cases where consecu-
tive terms are equal.) However, in Table 6.7 it is uniformly around eleven steps
from each local minimum to the next local maximum and around eleven more steps to
the next local minim=. In such a case, the triviality becomes a very striking
phenomenon, which is seen for both the sequences {O) and {m} when Z = 200
The same thing, with a smaller number of steps from one local extremum to the
next local extremrn, occurs for smaller values of Z .

We refer to this relative uniformity in the number of steps from one local
extremum to the next local extremum as property A.

As far as our calculations go, each of the sequences {c(0) and {a } for
Z = 1.6, 4, 10, 20, and 200 has the following further properties.

B. Each local minimum is negative, and each local maximum is positive.

C. If am is a local extremum and an is the next local extremum, then
aml >anI

As it happens, property B is a logical consequence of property C

It follows from properties B and C (and hence from property C alone)
that each local minimum is less than all subsequent terms, and that each local
maximum is greater than all subsequent terms.

The rate of decrease from one local maximum to the next local maximum is not
markedly different for different values of 2 . To illustrate this we list in
Table 6.8 the fourth local maxima of the various sequences. A similar thing is
true of local minima, as illustrated in Table 6.9, where we have listed the fourtl
local minima of the various sequences.

In Table 6.1, we listed all terms of the sequences out to the fourth local
maximum. In Table 6.3, ae listed all terms of the sequences out to the fifth
local maximum. However, it is questionable if the listings for m = 16 and m = 1"
in Table 6.3 are significant; most likely, Table 6.3 goes out only to the fifth
local minimum, but has a couple of extraneous extra entries. In Tables 6.5, 6.6,
and 6.7, we listed local mi.14ma and local maxima, and no other values, since this
sufficed to show the general behavior of the sequences; recall that the sequences
progress monotonely from one term shown to the next term shown. Indeed, they do
so with surprising regularity.

In the case of Z = 200, the (0) were computed with triple precision,
mwhich is why this sequence has such a long listing in Table 6.7.

The remarkably parallel behavior of aiO) and em for a given value of t
can certainly not be fortuitous, though we have not a clue as to an explanation
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Table 6.8

The fourth local maxima.

I(0) }
m m

1.6 5.0 X 10 1 7  4.7 X 10 7

4 1.3 X 10 4  i.1 10 1 4

10 7.8 X 10 4  4.9 X 1014

20 8.2 X 1014 4.1 X 1014

200 2.0 X 10 4  3.4 X 10 5

Table 6.9

The fourth local minima.

{a (0
) }( m

m m

1.6 -1.1 X l1 -1.0 X io-5

4 -7.3 X 10 1 3  -6.0 X 10 1 3

- 12 -12

10 -1.8 X 10 -1.2 X 10

20 -2.8 X 10 1 2  -1.4 X 10 2

200 -5.7 X 10 1 3  -9.8 X O 1 4
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of it. Not only do local extrema of a 0 and am occur at nearly equal values
of m , but their relative size behaves very uniformly. To illustrate this, we
have listed in Table 6.10 for each value of Z the ratio of the n-th local
extremum of am divided by the n-th local extremum of a(O). The relative uni-m m
formity of the final entry under £ = 4 suggests that the entries for m = 16
and 17 in Table 6.3 are perhaps not entirely spurious, though they cannot possibly
have more than their first significant digits correct.

The behavior of the ratios in Table 6.10 suggests very strongly that for a
given value of Z , each of the sequences c40) and am are values at integer
arguments from two damped oscillatory functions, and that the ratio of the n-th
extrema of these functions approaches a limit as the argument tends to infinity.
As the extrema of the functions will usually not occur at integer values of the
arguments, the ratios of the n-th extrema of the sequences will move somewhat
randomly about this limit.

If this, or something a bit like it, is the case, it would be of much value
to learn how to prove it. It would certainly give us much more information than
we now have as to bounds for the eam) and e , and hence as to the value we

should take for n . If sufficiently precise information were available, we might
even know how to compute the am  directly, without proceeding through the limiting
procedure which we now use.

In the absence of any sort of proofs, the extremely uniform behavior of the
ratios for Z = 200 in Table 6.10 suggests most strongly that the sizes of the
local minima and local maxima in Table 6.7 are approximately right. As the O)
behaved quite similarly to (0) and am , it would appear confirmed (though of
course not proved) that 0 = 130 was a large enough value for double precision

for Z = 200.

7. THE s-ALGORITHM. The E-algorithm is a transformation which has been
used with much success to accelerate the convergence of sequences. The reader
should be warned that the s-algorithm is a nonlinear transformation. The defini-
tion and a basic property are given in [7], p. 30. The entire Chapter III of [8],
pp. 37-95, is taken up with properties of the E-algorithm. The s-algorithm was
discovered by Peter Wynn; see [9], which contains the definition and a number of
basic properties.

Let [AX) be a sequence whose convergence is to be accelerated. Specifi-
cally, for a fixed n , let AX = a A); for large Z this converges very slowly
to an , and we wish to speed up the process. We define quantities ceA for
A > 0 and s > -1; we use recursion on s according to the scheme

(A) (A+i) (E()+I) (A) (7.1)

s+l s-1 s s

It is usual to picture the (A) ina triangular array, as in Figure 7.1. Then the
S

relation (7.1) involves the four corners of a rhombus in the array. It is called
the "rhombus rule".
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C(2) E ) (0)

(3) 3 5C(3) E(2) E(1)
£0 F2 £4

£z (3 3) )(2)

Figure 7. I.

() ( )(7

ao  -A A (A>0). (73

With )(7.2) and (7.3), we) can ncalculate the (A) by (7.l). then we can calculate

The point of this is that if

Liim AA=sA ,(7.4)
A.-

then very often

(irn ) - A, (7.5)L 22s

Figure 7.1
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Various sets of sufficient conditions for this to take place are given in [8].
One of these is discussed on pp. 43-50 of [15]. Surprisingly often, the conver-
gence in (7.5) is much faster than in (7.4). We found this to be the case when
we took AX = an ) for a fixed n

We used a computer program supplied by Peter Wynn. If one has an ALGOL com-
piler, one can use the ALGOL program given in [10]. Or one can use the programs
given in []] and (12]. They are attributed to Peter Wynn, but he disclaims knowl-
edge of their existence.

The E- algorithm was invoked first for Z = 20. Not knowing what to expect,
we had the computer calculate and print out the u 2 0h

2s up to2 6
1

o tecs

This was far more than needed. Already at 2s = 14, all the ( ) were essen-2s
tially equal to a, . They differ from it and each other by only a few units in
the final decimal place. W1ith the inevitable round off errors, one could not hope
to do better than this. To calculate c(0) requires knowledge of EM only for14 ( 0) M ()i1))
X = 0,1,...,15. That is, from knowing a, al 2), .... 5), one could
get a fine estimate for a1 , despite the fact that one musttake A as large as 60
to 70 before alA) is equally close to a1

Based on this, we tried the cases m = 2,3,...,15, taking
(A) (A)

Co  a ,

in accordance with (7.3). In each case we took A = 0,1,...,15. This allows us
to compute c(0) for each value of m . For each m , we got an approximation for
am  good to a 4 least 18 decimal digits to the right of the decimal place. To
get afi( ) this close to am , we generally needed X greater than 60.

Thus we got quite satisfactory acceleration of convergence in these cases.

For I = 200, we had to take A up to about 550 to get am approximately
equal to am, to the accuracy of the calculation (which was double precision). In
general, for 1 < m < 20 , a(6 1 f would not agree with a to more than two signi-

S- 0am m
ficant decimal digits, sometimes only one. Then for 1 < m < 20 , we took for
each m

(C) (A)

0 am
in accordance with (7.3) for 0 < A 61. The M(A)

-60 agree fairly well with the
corresponding am ; for m = 3 , cti .e was agreement in the first 11 decimal
digits after the decimal point, and for the other values of m , there was agree-
ment to 12 or more decimal digits after the decimal point.

This certainly was a very, very major improvement for a fairly minor comput-
ing investment. It looked as if we could have done still better bycarrying A on
beyond 61. However, instead we tried an iteration of the c-algorithm. This is
discussed in (131, and in some cases has had sensational success. In our case,
it worked out quite poorly. This whole area needs to be explored more carefully.
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Possibly more critical is the question how sensitive the c-algorithm is to
the build up of round off error. Our experience seems to suggest that this is
not serious. However, the question deserves more careful study. We might remark
that in our calculations for Z = 200, the E() had erratic irregularities in
their latter digits, especially for larger values of s . We did not explore the
matter enough to discover the cause of these. The irregularities did not seem to
be such as one would expect from round off errors. Another possible contributing
factor was the fact that for 0 < X < 10 we computed the cjX) by (5.11) by the
FFT, using triple precision, while for larger X we used

(a) (X-l) +(A)
m m m

where the 30) were computed by (5.12) using double precision. While this couldm
certainly cause irregularities, they should be much smaller than those observed.

We can only repeat that, while we had good success with the E-algorithm,
there is need for more careful study. We should point out that it is safe to
experiment, if one takes the precaution of applying the C-test after values for
the an have been calculated. As we noted before, if the C-test works, one
certainly has accurate enough values for the n , no matter how they were ob-
tained.

Given what seem to be suitable approximations for the am , one must still
sum two series to calculate W(z); see (4.11) and (4.12). Indeed, if we wish to
invoke the C-test as a test of our approximations for the am , we must sum two
series; see (4.20). One of these is a Fourier series. A method to apply the e-
algorithm to accelerate the convergence of Fourier series is given in [141.

For theoretical reasons, which are explained in (14], and on pp. 55-56 of
[151, the thing to do is to write the Fourier series as the real part of an ex-
ponential series. In our case, (4.20) comes already in this form. In fact (4.20)
can be rewritten as

C(e) a= e 2m i - Zn(w(2 cosO + %i)- a(w(2cosO+2i))2m}. (7.6)

So we seek the values of

2n-i1a e 2mi(7.7)

and

I %(w(2 cose + 8i)) 2 . (7.8)
M-1

Clearly (7.7) is

Lir AA (7.9)

if we define
A 2e

A A " a m ~m~i(7.10)

I .
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So we apply the c-algorithm just as before to accelerate the convergence of (he
A X . The only difference is that since the AA are complex numbers, the C's

will be also. However, the computer can be set to do complex arithmetic. After
the convergence has been accelerated, one just takes the real part.

From Table 6.7, we see that to get an approximation for (7.7) correct to 16

decimal digits to the right of the decimal point we can take

'I{A

for X > 100 . By contrast

,(0)
40

gave 16 correct decimal digits for 8 = 1 , and 12 for 8 = 0 . Probably

6z{E (0) 1
50

would have given 16 correct decimal digits for both values of 8

As the calculation of the ) involved complex arithmetic, it would have

used less calculation to calculate (7.7) directly, if the first 100 amis ar
known. On the other hand, to calculate e (0 ) requires knowledge of only the
first 50 am's.

As it is fairly laborious to calculate each am I it may be faster to calcu-
late 50 am'S and then do an c-algorithm with complex arithmetic than to calcu-
late 100 am's and then use (7.7) directly.

What about (7.8)? The theory in (14] and [15] depends basically on the fact
that we are dealing with powers. So it is perfectly applicable to (7.8). We
proceed with this quite analogously to the way we proceeded with (7.7). In this
case

40

gave 17 decimals both when 8 = Jit and when 8 = 0

In the above, we have used two c-algorithms. One is for a sequence {AX)
defined by (7.10). The other is for a sequence {BX } defined analogously from
(7.8). We wish the limit of the sequence

{A -B .

Why not apply a single c-algorithm directly to this sequence? This was tried,
but gave much poorer acceleration of convergence. The reason for this can be
explained by some of the theory in [8]. It is also explained on pp. 58-59 of [15].
It is pretty complex, so we skip it. However, it is the case that it is advis-
able to use the c-algorithm on each of (7.7) and (7.8) separately, rather than
combining them so as to use a single c-algorithm The same will apply to the two
series appearing in (4.12). Actually, unless one is very close to one of the
"plates", each series will converge fairly rapidly, and it is likely not worth
bothering with the c-algorithm
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8. RATE OF CONVERGENCE. By (4.13), (4.7), and (4.15), we have
U+)_ 18 [2mie -2mie]d

a(+i)= 6{1 C' £n(w(2 cosO + 8 i)) [e + e ]de}am W T
0
(X)n1l~n( 8 )2n [2mie -2mi8] 8 }

+ 61 1 f r J(w(2 cos a + - i)) [e + e Jd6}. (8.1)

n= 0

Define

v(u) = u + L + 8 i. (8.2)
U z

Then, by setting u = ei O , we may rewrite (8.1) as

a(X+l) = .{i f £n(w(v(u))) [u 2 m- + u-2m- ]du}

+ EI. e ( M f (w(v(u))) 2n [u2m- 1 + u- 2m- du} (8.3)IT n
n=l

where the integration is counter clockwise along the top half of the unit circle.
In the u - 2m -1 part, set t = u-1 . As

v(u) = v(u
- )

we may rewrite (8.3) as

a = i 2n(w(v(u)))u2m- du} + a{Ai I ( (X) j (w (v (v)) ) 2nu2m- ldu} (8.4)
M Tri Trin=1l

where the integration is around the unit circle.

Suppose we take 0 < a < 1 , and deform the contour of integration in (8.4)
to go around a circle of radius a , with center at the origin (if we can). If
the summation in (8.4) behaves decently, then the u2m- I term in (8.4) will let
us conclude that

2m

a(X+i)< K a , (8.5)

for some K . This will be useful in establishing convergence.

If we can deform the contour as indicated, so that Jul = a in (8.4), then
by (8.2) v lies on the ellipse

2 2
x + 2 = 1 (8.6)

(a + a2 a - - a)

More generally, if a < Jul < 1/a , then v lies inside the ellipse (8.6). Put

Then the equation of the ellipse is
2 2

x+ ("8/L) = 1. (8.8)
G a-4
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If this ellipse contains no points of the DCC in its interior (see Figure

3.1), then one easily sees that w(v(u)) is analytic for a < Jul < 1/a. Also,

since w carries the s-plane minus DCC into the lower half of the w-plane,

In(w(v(u))) is also analytic for a < Jul < 1/a. Thus, in (8.4) one can deform

the contour of integration into any circle of radius between a and 1/a.

If one decreases a from 1 towards 0 , the ellipse (8.6) increases in

size, but always with the foci at (±2,8/). So there will be a unique a , a = A,

for which the ellipse passes through (±2,0), on the DCC. For a < A , there will

be points of the DCC inside the ellipse, but for A < a < 1/A there will be no

points of DCC inside the ellipse. We undertake to determine A

Define

k k() 2 + + (8.9)

We have

4 2 2 (8.10)
k U4 + Z(810

We will show that

A =A() k(2 + k)

Note that k > rk , so that

0 < A < I . (8.12)

As we pointed out above, it suffices to show that if a = A , then the

ellipse (8.6) passes through (±2,0). We have

1 E2 (2 + k)2 Z2 + Uk2 + 4k3 + k4
A +k(2 + k) Zk(2+k)

If we substitute the right side of (8.10) into this, we get

1 2k
2

A + - = i . (8.13)

Taking a = A in (8.7) gives

4k4  (8.14)

By (8.10), this gives

16k 2  (8.15)
1 2

If (±2,0) is to be on the ellipse (8.6), which is the same as the ellipse
(8.8), we must have

4 64

a 12 ( -4)
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If we substitute a from (8.14) and a-4 from (8.15) into this, we find by
(8.10) that it is satisfied.

So we have proved the following theorem.

Theorem 3.1. If A is defined by (8.11) then w(v(u)) and £n(w(v(u))) are
analytic for A < lul < 1/A

We will have

lw(v(u))I < 1 for Jul = a

if we choose a so that the ellipse (8.6) does not contain any points of SCC.
For this, it suffices that the ellipse not enter the lower half plane. This can
be assured by choosing a so that the ellipse passes through the origin. Then,
since 0 < a < 1, 8/Z = (1/a) - a.

Theorem 8.2. If we define

4 /16 + Z

then Jw(v(u))j < 1 for

A< Jul ~

The argument above shows that A(M) < A(Z). So

0 < A(Z) < A(Z) < - 1 . (8.16)4+k

We wish to find the-bounds on fw(v(u))J for lul = a < 1. By (3.1),

1
v(u) = w(v(u)) + ww (v (u))

So, by (3.1) and (3.12),

lw(v(u))I = b (8.17)

if and only if v lies on the ellipse

2 2
+ _ = 1 (8.18)

8-4

where

8= (b + ) . (8.19)

Thus, if we choose 8 so that the ellipse (8.18) intersects the ellipse (8.8),
then for some u with Jul = a we will have (8.17) satisfied. Conversely, if
the ellipses (8.18) and (8.8) have no points in common, then there is no u with
Jul --a for which (8.17) holds.
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We shall be interested in the extreme case in which a = A(M). Since we may
take a as close to A) as we wish, we can, by taking limits in the results

obtained, in effect take a = AM£)

Let us first find the minimum b for a given a . one might think that the
minimum b for which the two ellipses would intersect would be the one for which

the top point of the ellipse (8.18) coincides with the top point of the ellipse

(8.8). For this, one would have b -1 - b = (8/k) + A- - A. By (8.11) and (8.10),

b-1 - b = 4(2+k)/Z, so that

b= (8.20)

4 + 2k + V (4 + 2k)2+ 2

However, there are two possible configurations when the top points of the

two ellipses coincide. In one configuration, the ellipse (8.8) lies entirely in-

side the ellipse (8.12) except for the single point of tangency at the top. In
this case, a decrease in b would cause an increase in $ , which would enlarge

the ellipse (8.18), so that then (8.8) would lie entirely inside it. In this case,

the b which makes the top points coincide would be the least b for which the

two ellipses would intersect, and so would be the least value of Iw(v(u)) f for

Jul = A

Ellipse (9.8)

Ellipse (8.18)

Figure 8.1.

In the other possible configuration, illustrated in Figure 8.1, the ellipse

(8.8) lies partly outside the ellipse (8.18). By decreasing b and increasing

0 , we can enlarge the ellipse (8.18) to a size such that the ellipse (8.8) lies

entirely inside except for TWO points of tangency. The value of b that produces

this condition is the minimum of lw(v(u)) j for Jul = A

To find the y-coordinates of the points of intersection of the two ellipses,

we eliminate x between (R.8) and (8.18). This gives

4 )y2 16a(B - 4) 64a(B - 4) + ( - ) (m - 4) (0 - 4) 0
- t 2

But when a = A , we have by (8.14) and (8.15)
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4k
4  16k

2

Z2 Z2

So the equation for y reduces to

2 16c(B - 4) 16k 2( - 4) 2

4(0-a)y - y + 2 = . (8.21)

At b = 1, we have 5=4. For A < b < 1 , we have 4 < 8 < a. In this
range, we see that (8.21) has both a positive and a negative solution. As 6
approaches a , the negative solution approaches -- and the positive solution
approaches 4/, . For 6 > e , there are two positive solutions, until we reach
5 = a + (a2 /k2). By (3.14) and (8.15), this equals a2/4. At this value of B,
(8.21) has a double root, and for larger values of 6 there are only non-real
solutions of (8.21). So, the largest value of B for which (8.21) has real
solutions is

4k 32k 2  64k4 (8.22)-- = -+ + - (.2
= £4 X2 -4

By our earlier analysis, the value of a at which the top point of the ellipse
(8.18) coincides with the top point of the ellipse (8.8) is

16 2

4+ (2 + k) (8.23)

If we give a the value (8.23), then there is certainly one common point i
the two ellipsep, namely their common top point. So (8.21) has at least one real
root. So (8.23) cannot be greater than (8.22), else when B has the value (8.22
there would be no real roots of (8.21).

The question is whether we have the situation of Figure 8.1 when we give 3
the value (8.23). For this to happen, the two solutions of (8.21) would have to
be the y-coordinate of the common top point of the two ellipses and a SMALLER
number. The y-coordinate of the common top point is Yr-4 = 4(2+k)/Z, by the
result just before (8.20). The product of the two solutions of (8.21) is

16k2 (B - 4) 2 -2 4(S a ) ,

12

which is

16k2  16 22 64
I-- (2 + k) 4- (1 + k)},

which is

16k
2 (2 + k) 4

L4 (1 + k)

Then the other solution of (8.21) would be

4k 2(2 + k)
3

93 (1 + k)

Thus we get the situation of Figure 8.1 if and only if
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4 4k 2 (2 + k) 3
(2 + k) > 3 + k)

which is equivalent to 12(1 + k) > k2 (2 + k) 2 . As Z2 = k4 - 4k2 by (8.10),
this is e uivalent to (k - 2)(1 + k) > 2 + k. As k > 2, this is equivalent to
k > 1 + 75. As we said, when this holds, we have the situation of Figure 8.1. In
this case we should define a by (8.22). Otherwise, we should use (8.23).

Theorem 8.3. Let us define B = B() to be

B = (8.24)

4 + 2k+ /(4+ 2k) + 2

2
if it < 16(2 + A ) and take it to be

B = 1_ _ (8.25)
k4 + /8k2t

2 + 16k 4

£2

2 2
k (k + 8 4 + . )

9.2

k2(/ + (4 + ,2) )2

otherwise. Then for A < Jul < 1/A , we have lw(v(u))l > B

The proof of the theorem follows from the analysis above. This same analysis
shows that the maximum b would be the one for which the bottom point of the
ellipse (8.18) coincides with the bottom po'.nt of the ellipse (8.8). Thus we can
.conclude:

Theorem 8.4. Let us define

- - 2- 4 + £

B- B(£) = 2k + (2k-4)2 + (8.26)

Then for A < rul < I/A , we have fw(v(u))J <

To avoid cancellation in calculating 2k-4, we can use (8.10) to get

2k-4 2(k-4) 
2Z 2

k-2 k 2 (k+2

Theorem 8.5. We have AB < 1
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Proof. If B were as large as 1/A, then the ellipse (8.18) would be at

least as large as the ellipse (8.8). But then their bottom points could not

coincide.

Put

W(V(u)) re , (8.27)

with 0 < r

Recall that we are using DCC in the v-plane. Therefore, by the formula above

(8.17), the entire v-plane minus DCC is mapped into the lower half of the w-plane;

see our earlier discussion of (3.1). So in (8.27), we must have

-9r < e < 0 . (8.28)

Recall that c(mI ) = 0 (see (4.9) So b-, .4)m

(0) = - Zi Zn(w(v(u)))u 2m-ldu}
m 7T i

where the path of integration is the unit circle. Take d a constant. Then for

1 <m

a = {i. ( {in(w(v(u))) + d}u2 m-ldu} (8.29)

Take c positive and very small. Then, by Theorem 8.1, we can deform the

path of integration to the circle lul = A + E.

Let us take

d = ni - Zn(BB) ,

D = D(Z) = TIri + £n(B/B)I. (8.30)

Then by (8.28) and Theorems 8.3 and 8.4 Iin(w(v(u))) + df < D for u = A +
c. So by (8.29) 1 0)' 2D(A + £)2m for 1 < m. Letting c tend to zero gives

a (0) < 2DA2m (8.31)m

for 1 < m. Then for 1 < N
I (O)1 <_2D(AB]) 2 N

2m (0) -2(AB) (8.32)

m - 2-AB

put

2(AB) 2

-2 (8.33)
S- (A
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Theorem 8.6. For 0 < X and 1 < m

la(XI < 2DAy' Y X+1 - 1 (8.34)

CO +2

I iL (), < D Y  - X (8.35)
m=l m - y - 1

Proof by induction on . By (8.31), (8.32), and (8.33), the theorem holds
for A = 0. So assume the theorem for X . Then, by Theorems 8.4 and 8.5, the
right side of (8.4) converges uniformly for A + c < lul < 1, for sufficiently
small positive c . So we deform the contours of i tegration to lul = A + c.
On this circle, jin(w(v(u))) + dl < D , as we had before, and 1w(v(u))j <
by Theorem 8.4. So by (8.4) and (8.35)

Y +2 Y2

;a+i)i < 2D(A + C)2m + 2D (A + E)2mm Ym y- 1

Letting c tend to zero gives (8.34) for A + 1. By (8.34) for X + 1 , using
Theorem 8.5 , we get

A+2 2
-2m , (X+l) I < D Y. - 1 2(AB)

m- -- Y -i _-(AI32 )_
m=l m - yl-

By (8.33), this is (8.35) for A+1

If y = 1, the fractions on the right sides of (8.34) and (8.35) should be
replaced by X+l, of course.

For the smaller values of Z , we will have (AB)2 < 1/3. In such cases,
0 < Y < 1. If (4.10) holds, and we shall show that it does, we can let A -X in
(8.34) and (8.35). We conclude

2DA
2m

-1 1y if 0 < y < (8.36)

g2' 1a I < if 0 < y < (8.37)-- 1-y

We prcceed to show that (4.10) holds.

Theorem 8.7. Let f(z) be analytic inside and on the unit circle. Let 1
t- the maximum variation of R{f(z)} foi; z on the unit circle. That is,

1(f(ei))} - 6{f(e i))I < 1 (8.38)

-ral e and @ . Let 0 < r < 1. Then the maximum variation of the

- f(z) for !zj < r is bounded by H , where

H - H(r) = -arctan r. (8.39)

16(f(Z I - {f(z 2) 1I <H (8.40)

r
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for each z and z2 with Jzlj < r and [z2 1 < r

Proof. As W{f(z)} is a harmonic function, we can conclude by the princip
of the maximum that its greatest and least values are assumed on the unit circle
So the maximum variation of 6{f(z)} for z inside or on the unit circle is 1
So our theorem follows from Problem 289 on page 140 of Part 3 of [161.

Define
Co

q) t2n (8.41
n-1

By (4.14) and Theorem 8.6, q(M (t) is analytic for Iti I A-2 ; hence q ( t)
is analytic inside and on the unit circle.

By (4.7) and (4.8), we see that the ( + 1) are in effect Fourier coeffi-
cients, so that for a suitably chosen (real) 6( +1)

0
( + I ) cos 2n0 = cos + )2n,
n n

n0 n=l
So by (8.2)

(0+l)+ {q ( X+ I ) (u)} 6 M{q (w(v(u)))} (8.42:
0

for Jl = 1.

Similarly, by (4.3)

(0)+ (0) ( nw(v(u))l (8.43)

for Jul = 1.

Theorem 8.8. For Jul = 1 , A < lw(v(u))j < A

Proof. By (8.2), for u = 1, we have v(u) on the line segment connectin

8i 8i
-2 +-- with 2 +1-

By (8.17), if Iw(v(u))I = b , then v lies on the ellipse (8.18). If b = A
then the ellipse passes through the midpoint of the line segment, and if b A
then the ellipse passes through the end points.

Define

v = max. var. of R (t)} for Itj = 1 (8.44)

By (8.43) and Theorem 8.8

v(0) , Ln A (8.45)

A

In Theorem 8.7, we take f(z) = IR{q(X)(z} /vM . By (8.44), the hypothesis
of Theorem 8.7 is satisfied. So, by Theorem 8.8, the maximum variation of
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|M

d{{q()(w(v(u)))} for ul= 1 is less than or equal to H(A)v (A )  By (8.42)

and (8.44) the maximum variation of V3q( (w(v(u)))} for Jul = 1 is v (X+ l) •

So v (X+ l ) < H(A)v (
. Hence, by (8.45),

V < (H(A))n- . (8.46)
A

As dIq(X)(t)} is harmonic for Itl < 1, its value at the origin (namely

zero) is the average of its values on the unit circle. So by (8.44)

If{q (A) (t) } < V M

for Itl = 1. By (8.41)
dI{q( (ei°) }=..e(A) cs2

Gq( is M~ cos 2n6.
n=l

So, by the usual formula for determining Fourier coefficients,

8 (A) = 1.2w {q(A) (eiOi )cos 2n e de
n r 0

for n > 1. So

18(A)I < 2v(A) (8.47)

for n > 1. Then by (6.1) and (8.46), az exists, and

< £n (/A) (8.48)lnl - I'H(R)

Thus we have established that (4.10) is valid. We still need to prove that

(5.8) can be made as small as desired, uniformly in A .

Write K for the right side of(8.4 8 ). The same argument which established

(8.48) gives

1 (A)l < K (8.49)
n

Theorem 8.9. Suppose that A, C, and D have the properties that

A(0) < A < 1, AC < 1, and for some d and for A < Jul < I/A we have

JLn(w(v(u))) + dl <D , (8.50)

lw(v(u))l < C . (8.51)

Choose M an integer such that

2M 2
4(AC) < 1 - (AC) (8.52)

Define
C2M C2 2

L - L(M) = 4(D + 2 K)/(l - (AC) (8.53)

C -1

Then for I <m, 1 < fl ,and 0 <A
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la'l)l < (1- (AC) )LA , (8.54)

m ~

Ja < (1 - (AC)2 LA2m (8.56)

c 2m laI < (AC) 2 4L . (8.57)

Proof. We first prove (8.54) and (8.55) simultaneously by induction on .
Using (8.50), we can derive a(0) I < 2DA2m  from (8.29) in the same way that
(8.31) was derived. By (8.52), we have M > 1. So then (8.54) for X = 0
follows by (8.53). From (8.54) we infer (8.-55) for A = 0 . So assume that
(8.54) and (8.55) hold for A . In (8.4), take the contour of integration to be
Jul = A + e , with E positive and very small. Then

CL(X+l)1 < 2(D + j c 2n 1() I) (A + -) 2m
m n n

n=l

Letting c tend to zero gives

a(X+l) I < 2(D + [ c2n l(A)I)A2m
m n nn=l

By (8.49) and (8.53)
M-1

2(D + M c2 n(la Ml) < < (i - (AC) 2)L
n1 nn=l

By (8.55), with Q = M

2 j C2 n I)M I < 2(AC)2 L
n=M

So by (8.52)
00

2 C2 n la(A) I < 2(l - (AC)2)L
n=M

Thus we are able to conclude that (8.54) holds for X +1. From it, we can deduce
(8.55) for X+l. Having shown that (8.54) holds for all X , we can let ) -

and conclude that (8.56) holds. From it, we can deduce (8.57).

Corollary. The series

C2m i (1),

m=l

converges uniformly in A

Proof. Use (8.53) and (8.55)

Theorem 8.10. In Theorem 8.9, we can take A = A() , C = B(k) , and
D - D(M).
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Proof. The condition (8.50) follows from the result just below (8.30). We
get (8.51) and AC < 1 by Theorems 8.4 and 8.5.

Theorem 8.11. In Theorem 8.9, we can take A = A(£), C = 1 , and D = 5(1),
where

D I = =(i - In b(1)j, (8.58)

in which

b b(£) = (9.59)

82 64 + Z
2

if £2 < 32, and

b = b(£) = 2 (8.60)
k2 , 6 + L2 + /k4(16 + 0)2 £4

£2

k (2k + /16 + 12

otherwise. Also L(M) has to be written as

L = L(M) = 4(5 + (M-1)K)/(1 - A2)

Proof. By Theorem 8.2 we conclude that (8.51) is satisfied. To find the
minimum of lw(v(u))l for lul = A , we parallel the proof of Theorem 8.3. With
a = A , we have a = 4 + (64/t2). So, if we wish the ellipses (8.6) and (8.18)
to have the same top point, we will take

256
8=4 +- (8.61)

£2
For a as given just above, the equation for the y-coordinates of the points of
intersection of the two ellipses reduces to

4(0_a)y2 16a(8-4) Y + 648(8-4) = 0

£ £2

The largest value of 8 for which this has real solutions is

0 = 4(16 + £ 2)k 48.62)

The y-coordinate of the top point of (8.8) is 16/£. The other y-coordinate of
intersection will be

16(64 + £2)

31 3

We get the configuration of Figure 8.1 if and only if
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T2

16 16 (64 + Q2)
> 33

This holds if and only if Z2 > 32. So lw(v(u))! > b(£) for

< Jul <1
-A*

So, as b(Z) < (w(v(u))J < 1_, we can take d = (ri - Zn b(£)) and conclude
that (8.50) holds with D = D(Z).

Theorem 8.12. In Theorem 8.6 and the results (8.36) and (8.37) we can re-
place A, B, D, and y by A, 1, U, and y respectively, where

-2-2A
-2

1A

Proof. As we have just seen, (8.50) holds if we replace A and D by
and D. So we can parallel the proof of Theorem 8.6, using Theorem 8.2 instead of
Theorem 8.4 and 8.5.

9. AFTERTHOUGHT. Let us write (X) for the (infinite) vector with com-
ponents BmM, and y for the (infinite) matrix with components Yn,m • Then
(4.8) can be written as

-(A+1) -- (A)

So (6.1) can be written as

a : AY(o)} , (9.1)

X=O
where we write a for the (infinite) vector with components am . The proof that
we gave that the right side of (9.1) converges does not depend on what the startin(
vector (0) is. Hence

(1 - i)-1 Y-
X=0

exists, and we may write (9.1) as

& = (1 - -)-(O) (9.2)

-(0) -(0)
since & =8

If we write a for the (infinite) vector with components ct), then by
(4.13) and (4.7), we may write (4.15) as

-(A+l) -(0) --()
a +yc

Letting A - - gives

- -(0) --

This agrees with (9.2).
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If it were not for the fact that we can accelerate the convergence of the
right side of (9.1) by means of the c-algorithm, it would probably be quicker to
compute an approximation for & by means of (9.2).
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SENSITIVITY COEFFICIENT OF EXTERIOR BALLISTICS
WITH VELOCITY SQUARE DAM~PING

C. N. Shen
U. S. Army Armament Research and Development Command

Benet Weapons Laboratory, LCWSL
Watervliet Arsenal, Watervliet, NY 12189

ABSTRACT. The principal equation of exterior ballistics has a drag
term which, in this case, is proportional 'to the square of the velocity
in the tangential direction of the trajectile. The sensitivity coeffi-
cient is expressed as the ratio of the initial elevation angle deviation
to the initial percentage velocity deviation. The work in this paper
is to find analytically the sensitivity coefficient of the exterior
ballistics with velocity square damping which comeq from the nonlinear
air resistance for a projectile. This principal equation is integrated
analytically in obtaining the solution for tangential velocity in terms
of the elevation angle, together with all the necessary initial condi-
tions. The horizontal range and the vertical range are also expressedF as integrals of certain function of the elevation angles. In order to
obtain the sensitivity coefficient it is necessary to find the pertur-
bations of the horizontal and vertical ranges. This procedure is
similar to that of evaluating differentiation under the integral sign.
The perturbation of the ranges is the sum of the perturbations due to
the initial velocity, the initial elevation angle and the impact ele-
vation angle. By setting to zeroes the range perturbations we can
group the coefficients of the perturbations into two separate equations.
The ratio of the perturbations for initial elevation angle to that for
initial velocity is the sensitivity coefficient for exterior ballistics
that we are seeking.

I. INTRODUCTION. The design of a gun involves numerous parameters.
These parameters should be in such a combination that it gives the best
first round accuracy. The shell while it leaves the gun has pertur-
bations for the muzzle elevation angle and the muzzle velocity. The
ratio of the two is the sensitivity coefficient of the interior and the
exterior ballistics. It is desired to compensate the errors due to
uncertain changes of muzzle velocity, by the automatic response of the
muzzle elevation angle within the gun system. With a correct design
this can be made by matching the exterior ballistics to the interior
ballistics through the analysis of gun dynamics. This is what is called
passive control, since there is no external measurement involved, nor
instrumentation needed for control. This general problem can be for-
mulated by first investigating the sensitivity coefficients for exterior
ballistics with velocity square damping.
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II. DYNAMICAL EQUATIONS FOR TRAJECTORIES. For a constant mass
travelling in a vertical plane with no lift and applied thrust, but
having drag and velocity vectors contained in the plane of symmetry as
shown in Figure 1, the dynamical equations of motion are [1]:

dx vcos0 = 0 (1)dt

- vsin8 = 0 (2)
dt

d6
m(gcose + v ) = 0 (3)

d2x Dcos6
dt2  m (4)

Where m = the mass of the projectile
g = the acceleration due to gravity
D = the drag of the projectile
v = the velocity of the projectile
e = the path inclination (elevation angle)
x = the horizontal distance of the projectile
y = the altitude or vertical distance of the projectile

It is noticed that deviations due to anomalies in the azimuth direction
is not considered here.

By differentiating Equation (1) with respect to t one obtains

d2x _d

dt' - d (vcose), (5)
dt2  dt

Substituting into Eq. (4) we have

d (vcos) = - Dcos (6)

Solving or dO/dt in Eq. (3) one obtains

dO = .-gcosO (7)
dt v

Equation (7) indicates that the differential equations can be transformed
from the time domain in t to the angle domain in e. Equations (6), (1) and
(2) are divided by Equation (7) in achieving this transformation as

d(vcos) -Dv

dO mg
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dx v 2

dO g (9)

=d - v2  (10)
d= - -tanO

Equation (8) is called the principal equation of exterior ballistics [2].
It can be integrated if the drag D is a known function of velocity v.

III. TRANSFORMATION OF VARIABLES UNDER HEAD WIND DRAG. The head
wing drag D is a velocity square damping term given as

D = mcv 2  (11)
where

c = cw(j dZ)(p/2) (12)

cw = the dimensionless resistant coefficient
d = the diameter of the projectile

and p = the air density.

Thus the principal equation of exterior ballistics (Equation (8)) becomes:

d cv3
d (vcose) (13)

A further transformation of the dependent variable is necessary by letting

u - vcose (14)

where u is the horizontal component of the projectile velocity. Then the
dynamical Equations (13), (9) and (10) become

du c3C
u = - usec3 e (15)

dx u2 sec 2O(dO g (16)

dO = - sec 2OtanO (17)

To simplify further the form of the dynamical equations another trans-

formation of the independent variable is made by letting

q = tanO (18)

where q is the projectile slope.
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Thus

d sec 2O = l+q2  (19)
de

Equations (15), (16) and (17) are divided by Eq. (19) to give:

du = E_ u3 (1+q2 )1/2dq (20)
g

dx =- 2 dq (21)
g

R
2

dy = - _. qdq (22)
g

Solution for u in Equation (20) can be readily integrated in closed form.
Solutions for x and y can be expressed in the form of integrals once u2
is obtained.

IV. SOLUTION FOR HORIZONTAL COMPONENT OF PROJECTILE VELOCITY AS
FUNCTION OF TRAJECTORY SLOPE. The solution for horizontal component of
velocity u can be obtained by integrating Equation (20)

_1(u-2_Uo2) _ - {q(l+q2)1 /2 + Pn[q+(l+q2)i/ 2]}q (23)
9 qo

where qo equals projectile slope initially at launch and

U02 = v0
2 sec- 2

60= v0
2 (l+q0 2)

-  (24)

by virtue of Equations (14) and (19).

Equation (23) can be written as

1 1 {l-U2 C
T = [p(q) - po(qo)} (2S)

where p(q) = q(l+q 2 )1/2 + tn[q + (1+q2)1/ 2] (26a)

and pO(q0 ) = q0 (l+q0 2)1/
2 + tn[q + (1+q02)1/

2  (26b)

Finally, Equation (25) becomes in the form

22V02 H (q, qo',Vo21 c/g)

U2 = { I + - (qq 0 5v 0 2.c/g) (27)l+qo 0 I - H(q,qo0,Vo0,C/g)
}
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whereH(qqv 2,c/g) = C Vo2 [p(q) - po(qo)] (28)

It is noted from the above equation that as

q - qo Hq~qo 0 (29)

For the case with no air resistance we have as

c - 0 Hc: 0 = 0 (30)

which implies that the horizontal component of projectile velocity u at
any time is a constant.

V. SOLUTION FOR NONDIMENSIONAL RANGE. In determining the range x
for the trajectory the closed form solution of u2 in Equation (27) can
be substituted into Equation (21) to obtain the solution in integral form
as

2 qi H(q,qoVo 2 ,c/g)

xi - x0 - [(qi-qo) + f dq] (31)
g(l+q 2) q 1 - H

where xi = range at impact point
xa = range at initial point

and qi = projectile slope at impact point.

To non-dimensionize the range, Equation (31) is divided by the factor
vo2/g as

X(xi,xo,vo)/A(qi,qo) = Gx(qi,qo,voiC/g) (32)

where the nondimensional range is

X(xi,XoVo) = (xi-xo)g/vo2 , (33)

the slope function is

A(qo,qi) = qo'qi (34)
1+qo 2

and the range drag function due to air resistance is

Gxqi,qov 2,c/g) = f 1 o dq (35)
1 0 0 qo-qi q 1 - H
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It is noted that the left side of Eq. (32) contains no drag coefficient c.
It is the term Gx that is a function of H, which in turn is a function of
the drag coefficient c. The numerator of the integral in Eq. (35) is H.
Since Hc= 0 = 0 in Eq. (30), the range drag function at this condition is

Gx(c=O) = 1 (36)

A separate form of Eq. (32) can be written as

g(xi-x°) (1+q0
2) 1 fq H

2 1 .-- f -dq (37)
vo 2  (qo-qi) (qo-qi)"q 1-H

VI. VARIATION OF THE NONDIMENSIONAL RANGE AND THE SLOPE FUNCTION.
In order to obtain a first round hit of the target one of the conditions
is that the variation of the range should be zero, i.e., from Eq. (33)

6(xi-xo) = 0 (38)

We take the perturbation for the nondimensional range from Eq. (33)
as 

6X 6(xi-xo) 26vo

X xi-x 0  vo

-X 26Vo 39

= 0 (39)

The variation of the slope function A in Eq. (34) becomes

6A 6qi 6qo 2qo~qo
__T_ - q + -q~q (40)qA q-qi qo-qi l+qoX 40

Next, taking the variation of Eq. (32) and using the expressions given
in Eq. (39) and (40) we have

6X 6A 6GX (41)
-T T Gor 26vo  Sqi  Sqo  2qo6qo 6G(

V qo-qi qo-qi 1+qo 2  G
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It is noticed that in the absence of air damping the range drag
function is unity from Eq. (36) and the variation SGx = 0. Under this
condition the solutions for Eq. (42) was given by the author in the paper
entitled, "On the Sensitivity Coefficient of Exterior Ballistics and Its
Potential Matching to Interior Ballistics Sensitivity". This paper was
presented at the Second U.S. Army Symposium on Gun Dynamics, September
1978. With the velocity square damping the variation of Gx is not zero,
i.e.,

6Gx j 0 (43)

VII. VARIATION OF THE RANGE DRAG INTEGRAND. The range drag function
in Eq. (35) can be written as

Gx qi-qoVo2,C/g) fqi F(q,qoV 0
2,c/g)dq (44)

qo-qi 
qo

where the range integrand is

2/ H(q,qo,vo2 ,c/g)
F(q'q°'v°2,c/g) = 1 - H

The variation of G. involves the initial velocity vo, the initial slope
qo, and the impact slope qi.

Eq. (44) has the parameters qo and qi in the denominator as well as
in the integral of F. By chain rule we have,

6Gx = - 1 6[fqi F(q,qoV 0
2,c/g)dq]

q°'qi qo

-(-l) (qo-qi)-26(qo-qi)f q i F(q,qo,vo2,c/g)dq (46)
qo

The variation of the integral of F is given in the next section.

VIII. VARIATION OF THE RANGE DRAG INTEGRAL. The parameters in the
integral are qo, qi and vo . The variation of the range drag integral
follows the rules of differentiation under the integral sign.

0
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6(fqi F(qqoV 0 2 c/g)dq]
qo

= [fqi .F dq]6vo +

q v

qo q + F(q=q05q°av°
2 "c/g)6q(

The last term of this equation is zero by virtue of Equations (29) and
(4S). Substituting Eq. (47) into Eq. (46) gives

6GX P 1 q f L-dq]6v°
qo-qi 0oav1

+ F(q=qi) f qi F d q]qiqo-qi (qo-qi)2 qo

+ 1 fqi 3F dq + -iL2 fqi F dq]6q (48)
0 2

IX. EVALUATION OF THE PARTIAL DERIVATIVES OF THE RANGE DRAG INTEGRAND.The partial derivatives ofFwith respect to vO can be found by using Eqs.
(45) and (28).

F ( 1 -H ) av o - H ( - 5 -v) ( 4 9 )
aVo (1-H)2  (1-H)2  (49)

where H 2Vo 2
S[p(q) -p (q0 ) H 

(Sa)
avo  g l+qo 2 P()P(o Vo

Combining the above we have

3F 2 H
avo vo (1-H) 2  

(SOb)

-275-

_ _ _ 
I



Similarly the partial derivatives of F with respect to qo is

aH

3F _9q

-_ - (1H 1 (51)
' qo = (1-H) 2 (1

where

o c V 2(_l) (,l+qo2-22qotp(q)_po(qo)]
aqo g 0

c V0
2  

dpo
+gl o2 (-I) dqo

2qo c V0
2 dpo

--H - - -(52)
1qo2  g l14qo2 dqo

Substituting Eq. (52) into Eq. (51) one obtains

BF 2qo H c Vo2 dpo 1

Dqo  +qo2 (1-H) 2  g (1+q0
2) dqo (1-H)2  (53)

X. VARIATION OF THE RANGE DRAG FUNCTION. By substituting Eqs. (45),
(50) and (53) into Eq. (48), we have

1 iH 26v o6G= [ 0 q f CIHydq] -
qo-qi o (-H)

+ [_ Hq=qi I q , dq] 6qi

l-Hq=qi qo-qi qo 1-H qo-qi

+ 2qo fqi H dq + 1 f4q.i H dq

l+q o qo (1- qo-qi q 1H

+ S Vo2  dpo Iq dq 216qo (4)
g 14q---7- ' dqo qo 1- qo-qi

It is noted that the difference of the end slope is not zero, i.e.,
q^-qi # 0. Therefore, the problem does not become singular. We have
expressed the variation 6Gx in terms of the variational parameter 8vo,
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6qi, and 6qo. However, the variational parameter dqi at the impact point
is not known explicitly and must be eliminated by using another variation
in the direction of the elevation y.

XI. VARIATIONAL EQUATION FOR THE RANGE. By substituting Eq. (54)
into Eq. (42) and grouping the coefficients for the variational terms,
we have

IV 26vo + qi + - 0 (55)
vo qoqi I qo-qi

where I
1 1o- - ii2(qopqi) (56)I v = 1 Gx qo-qi

-1 1 Il~oq) 1 (57
q=- Gx qo-qi x _Hi(

and

1 1 1 2q0I + 1 (qo,qi) + ( 2 o )IIlqo 1+Gx qoqi Gx l l2q°qi

+ 1 c Vo2 dpo 2qo
Gx g l+q -- dqo0- 0 2 (qoqi) -l+ (qo -i) (S&)

In turn, the integral Ill, 112 and 102, and other terms are given
as follows.

fll(qopqi) f qi H(qqovo2 ,c/g) dq , (59)
qo 1-H

l2(qoxqi) = f qi H dq, (60)
qo (1-H) 2

I02(qoqi) = 1 dq , (61)
q0 (1-H) 2

and Hi  H(q=qi) (62)

Gx -- q1q -. ill (63)
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It is noted that 6qi in Eq. (55) has to be eliminated in solving the
sensitivity problem. Similar variation equation may be obtained by
considering the variation of the elevation.

XII. THE SOLUTION FOR ELEVATION. The differential equation for
elevation was given in Eq. (22) and the solution for u is in Eq. (27).

Substituting Eq. (27) into Eq. (22) gives

2Vo H(q,qo.v2,c/g)

gh14oa). 1 -H

Integrating the above one obtains
vo2  [qi2o +qi qS dq]

Y-Y° = g(l+qo2) 2 qo I-H

Rearranging yields the relationship between the range Y, the end slope
function A, and the elevation drag function Gy.

12
Y(yi,yo,vo)/A(qi,qo) = - (qo+qi) + Gy(qiqovo2 ,C/g) (66)

where the nondimensional elevation is
g (yj-Yo)

Y(yi,Yo,Vo) = v°-y- (67)

A is given in Eq. (20) and the elevation drag function is

G y (qiqV 0
2 ,C/g) qq f qi qF(q,qoV 0

2 ,c/g)dq (68)
/ = i qo

A separate form of Eq. (66) may be written as

g(yi-yo) qo-qi 1 1  q d

[ lq 2 q ) qo-qi q 0

It is noted that left side of Eq. (66) contains no drag coefficient c.
It is the term Gy which is a function of drag coefficient c.

For c 0 Gy 0 (70)
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XIII. TERRAIN SLOPE FROM LAUNCH POINT TO TARGET POINT. If Eq. (69)

is divided by Eq. (37) with the aid of Eqs. (35) and (68), one obtains

Yi-Yo A M =(1/2Xqo+qi)+Gy (71)

xi-x o 0 Gx

where m is the terrain slope from launch point to target point, a constant

parameter. Therefore,

(/2 qo+qi) + Gy = mGx  (72)

It is noted that for m = 0,

qi = -qo - 2Gy (73)

From Equations (36), (70) and (72) we have for c = 0,

qi + qo = m . (74)

We use Equation (71) to find the variational equation for the elevation.

Taking the variation of Eq. (72) for any given m, we have

(I/216qo+qi) + SGy - mG Gx = 0 (75)
X Gx

where 6Gx/Gx is given in Equation (42) and

6Gy q q 6[f qF dq]

- (-i)(qo-qi)- 26(qo-qi)Jq i qF dq (76)
qo

obtained from Eq. (68).

It is noted that for c = 0, both 6Gy and 6Gx are zero in Eq. (75).
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It can also be proved that the result for 8Gy is

[- fqI - - !L- dq]
qo-qi qo (l1-H)2  v 0

+ [ qiHq=qi 1  q, qI d 6qi
lHqq i  qo-qi qo I-H qo-qi

+.j2 f dq + I f 1 Hdq
+ q1- 0 (1H)2 qo-qiq 1H

9 !i 2 dqo fq (1H)2] -q- (77)

XIV. VARIATIONAL EQUATION FOR THE ELEVATION. By substituting Equa-tions (77) and (42) into Equation (75) and grouping the coefficients for
the variational terms, we have

26vo 6q i + 6qoVo q - 0 (78)

V0  qo-qi
where Jv - -i- J12 + mGx (79)

1 1 qiHi

Jqi - I qoq qo-qi Jll -H 1mGx (80)
and i 1 2qo0nd 2 (qo-qi) +  

I - + 2q0
2 qo-qi J1l1,- Jf__0 12

+ Vo2 dp_. - mG [ + 2qo(qo-qi)1g l+qo 2 dq °  J02 = m x[- +  +qo02 •(81)

In turn, the integral Jll, J12 and J0 2, and other terms are given as
follows.

= fq, qH(q,q 0 v2,c/g)/(lH) dq , (82)
q-8
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J12 = fqi qH/(l-H)2 dq , (83)
q
0

J02 = fqi q/(l-H)
2 dq , 

(84)

and

G I (85)
x qo-qi 11

XV. THE SENSITIVITY COEFFICIENT FOR EXTERIOR BALLISTICS. Eliminating

6qi/(qi-qo)from Equations (55) and (78) we have

2 6 v o  0 q o = 0 ( 6
[(Iv/Iqi) - (Jv/Jqi)] --- + [(Iqo/Iqi) - (Jqo/Jqi)] q 0 (86)RIV V 1 6voqo-qi

From which one obtains the sensitivity coefficient through the aid of
Equation (19)

660 (Iv/Iqi) - (Jv/Jqi) - 2(qo-qi)S =- =- [1- (87)

6vo/v o  (Iqo/Iqi ) = (Jqo/Jqi) l+qo 2

It is noted that Equation (87) requires the evaluation of the integrals
I and J, which are given in Equations (56) through (63) and Equations
(78) through (85).

XVI. SUMMARY. The following results are concluded in this paper:

1. The principal equation of Exterior Ballistics is derived with
the Trajectory Slope as independent variables.

2. The closed form solution for the horizontal component of
Trajectory Velocity is determined for the case of Exterior Ballistics
with velocity square damping.

3. The nondimensional range is obtained in terms of an end slope
function and a range drag function.

4. Variations of the nondimensional range are expressed as variations
of launch velocity.

5. Variations of the range drag function are in terms of the varia-
tions of the range drag integral.
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6. The range drag integral has parameters in the integrand as well
as the upper and lower limits. The variations of this integral are
found.

7. The partial derivatives of the range drag integrand are eval-
uated.

8. The variational equation for the range are in terms of elements
involving three integrals as coefficients of three variational parameters.

9. The variational parameters are that of launch velocity, the launch
elevation angle, and the impact elevation angle.

10. The average of the end slopes is equal to the terrain slope times
the range drag function minus the elevation drag function.

11. Variations of the nondimensional elevation are expressed as
variations of the end slopes and the variations of the drag function.

12. The variational equations for the elevation are determined
similar to that for the range.

13. Eliminating the variations of impact slope, 6qi, from the set
of two variational equations gives the ratio of the coefficients of
6vo/v O and 6qo/(qo-qi).

14. The sensitivity 80/(6v /vo) may be obtained by dividing this
ratio 6qo/(6vo/vo) by the quantity (l+qo2).

Numerical calculations of this problem will be carried out in the
future.
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MATHEMATICAL MODELLING OF SOME ASPECTS OF PIAJE PERFORAT it,

Werner Goldsmith

Department of Mechanical Engineering

University of California, Berkeley

INTRODUCTION

An examination of the effect of projectiles i targets is or,,, of the

most important problems in nilitary strategy, and the subject h:'s also

recently become technologically significant in such areas as iimipact

riveting, impulsive anchoring of bolts in rigid foundations, protection

of industrial equipment from fragments generated by accidents, integrity

of space structures in view of possible collisions with meteorites, and a

host of other applications. While the topic is receiving a continual

review and input as needed to analyze new phenomena introduced by recent

scientific development, there has currently evolved a spurt of interest

in this field resulting in special meetings and publications devoted to

the area. A comprehensive survey article has covered the entire spectrum

of the penetration of projectiles into all types of targets,(l)* two sessions

of a recent meeting of the Society of Engineering Science brought together

experts in this area, (2 ) and a special issue of the International Journal of

Engineering Science was dedicated entirely to penetration mechanics.
( 3 )

Ref. (1) presents a balanced quantitative analytical and experimental treat-

ment of the subject, divided into topics encompassing methodology, character-

istics of projectiles and targets, and applications to semi-infinite, thick.

intermediate and thin targets. Ref. (2) contains brief discourses on a

variety of penetration subjects, while Ref. (3) provided a substantially

Numbers in superiors refer to the references
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more detailed description of numerical methods of penetration performance

(including the governing parameters), projectile deformation and mass loss

(4)determination (
, soil penetration, effects of yawing, hydrodynamic approaches,

long-rod striker investigations, and a compendium of published information

on penetration described briefly in a qualitative manner (5 ).

The present contribution will focus on certain phenomenolcgical aspects

of the normal peretration and perforation of thin plates and those of inter-

mediate thickness by kinetic energy projectiles that will facilitate improve-

ment of relatively simple models of the process which will predict the history

and terminal state of the event with sufficient accuracy to be acceptable

without the need of invcking complicated and expensive numerical schemes.

In accordance with tile definitons cited in Ref. (1), thin plates are those

where stress and deformation gradients throughout the thickness can be com-

pletely neglected, while intermediate thicknesses are characterized by a

noticeable influence of the rear surface on target deformation.

Projectile impact on such plates will oroduce the deforv.ation patterns

of bulging and dishing, resulting from the effects of tending and shear and,

at velocities above the ballistic limit, a variety of perforation modes,

such as shown in Fig. 1, in addition to the gross target deflection. The

particular perforation mechanism found in any particular situation depends

upon the material Properties of target and striker, including hardiress, the

nose shape of the projectile, and the impact velocity.

Fracturc on the distal side of the target due to compressive stress waves

with amplitudes exceeding the ultir,:ate compressive strength of the plate

could conceivably be initiated in weak, low-density targets, while radial

failure can only occur in materials with pronounced lower tensile than comp,'es-

sive strengths. Spalling represents tensile failure of the target due to
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reflection of the initial compressive transient and is frequently found in

loading resulting from the impact of projectiles or from contact explosions.

Scabbing fractures have a similar appearance, but result from deformation

rather than excess stress and are due to local inhomogeneities or anisotropies.

Plugging occurs due to shearing failure produced by normally-striking blunt

penetrators and is most frequently found in thin or intermediate plates of

substantial hardness. Petalling is produced by high axi-symmetric tensile

stresses after passage of the initial pulse occurring near the lip of the

penetrator. This is produced by bending moments in thin plates most fre-

quently generated by sharp-nosed projectiles traveling at relatively low

velocities, and is generally accompanied by bulging or dishing. Fragmentation

occurs only in extremely brittle targets struck by projectiles at normal

incidence. Ductile hole enlargement is both an analytical concept following

initial penetration as well as an observed mechanism occurring alone only under

special circumstances; however, a combination of ductile hole enlargement end

cratering or plugging appears to be characteristic for the perforation of thick

plates of medium or low hardness.

At obliquity, the projectile may embed itself in the target, and either

ricochet or perforate while remaining intact or else fracturing into one or

more components. This process is illustrated by the phase diagram shown in

Fig. 2 derived experimentally for a typical impact situation.(l)

Correlation of experimental results for normal impact on thin and moderately

thick plates has occurred by means of empirical relations, by analytical

models based either on rigid-body mechanics or hydrodynamic representations,

the latter for initial ultra-high speeds, by completely numerical methods,
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and by combination of these techniques. Treatment by means of simple models

has the longest history and potentially the highest cost/benefit ratio; this

topic can be subdivided into approaches either neglecting or involving projectile

deformation with single- or multiple-effect forcing functions (the latter acting

either simultaneously or consecutively) applied to elastic/brittle, elastic!

plastic or elastic/viscoplastic targets. In the case of non-deforming projectiles,

a blunt nose shape has generally been observed to produce plugging, whereas a

sharp nose generates petals in the target. Contributions to the ballistic

limit velocity at nortial incidence, v 50, due to bulging, dishing, plugging and

penetrator deformation obtained experimentally for several projectile-target

configurations are presented in Fig. 3.(6)

The sequel will detail some experimental results which provide guidance

for the construction of suitable models for several different impact configur-

ations. It will then concentrate on a discussion of the analysis of the normal

perforation of very thin plates by spherical- and conical-nosed projectiles at

speeds just above the ballistic limit and on theoretical representations of

such situations by blunt-nosed strikers at speeds within the usual ordnance

range, but substantially above this limit, where plugging is expected to occur.

Critiques of current phenomenological descriptions will be included with sug-

gestions for improvements by combination of effects without exertion of excessive

computational effort.

EXPERIMENTAL OBSERVATIO14S

A number of experimental investigations have been conducted by the author

and his associates to ascertain the perforation characteristics of various

types of targets. In one such test series, thin, fully-annealed 2024-0

aluminum sheets were subjected to normal impact and perforation by spherical
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and cylindro-conical projectiles at velocities attainable with pneumatic

laboratory guns(7)(8). The quasi-static tensile yield and ultimate strength

of the target material are 12,800 and 33,000 psi, respectively, with an ultimate

shear strength of about 19,000 psi. The substance exhibits significant work-

hardening, but is relatively strain-rate insensitive. The 0.05 in. thick,

14.5 in. diameter plates were clamped in a rigid frame at the 14 in. diameter.

For the majority of the tests, the projectile diameter was 0.5 in.; either

a ball bearing with a hardness of RC6 7 or a hard-steel (drill rod) cylindrical

striker with a cone angle of 600 at the tip and an overall length of 0.75 in.

were utilized, with masses of 4.78 x 10- 5 and 6.66 x 10- 5 lb-s 2/in, respectively.

The ballistic lirnits for the two configurations were found to be 400 and 150 ft/s,

respectively.

Three tests were executed with the two 0.25 in. diameter projectiles;

here, the sphere had a mass of 0.60 x 10
- 5 lb-s 2/in, while that of the 600

conically-tipped cylinder, with an overall length of 0.625 in. was 1.744 x l0
- 5

lb-s 2/in. The plate deformation history and projectile position were observed

by means of a high-speed framing camera, with initial striker velocities de-

termined independently by means of the signal recorded from the interruption

by bullet passage of two sets of lights transmitted through slots in the barrel

near the muzzle end and focused onto photosensors. Final velocities were

obtained in many cases from the signal of two coils wound around a tube through

which the projectile passed after impact, in addition to the photographic data.

Strain and displacement gages were also employed to monitor the process, and

quasi-static tests were conducted to compare the resultant deformation with

that obtained under dynamic conditions.
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A suinary of the plate perforation runs involving all projectiles is

presented in Table 1. Selected photographs of the target behavior during

perforation of the two types of 0.5-in. diameter projectiles are presented

in Figs. 4 and 5, and Fig. 6 portrays the post-mortem appearance of projectiles

and craters. ro plastic defomaticn of the strikers was found in any of the

tests. The deformation history of the plate, including petal formation,

has also been plotted from camera data in Figs. 7 and 8 for representative

initial conditions.

Initially, the force history acting on the rigid projectile was detemined

by double differentiation of camera data, smoothed by a least mean-square

process and constrained by the independently-measured initial velocity. This

procedure was subsequently discarded in view of the large inherent errors in

such a process; instead, an empirical relation for the force history F(t) was

assumed in the form

F(t) = mbib = mb(BIe-B2nt sin 2 nt) (1)

where mb and Wb are the mass and deceleration of the projectile, BI and

B2 are empirical constants, and n is a scale factor so that the force

vanishes when perforation is complete at time t = T. This is defined as

the instant beyond which no further increase in the size of the crater occurs

which can be ascertained from the photographic data. Evaluation of the pro-

jectile trajectory requires a double integration of Eq. (1) which introduces

two additional constants; however, two of the four empirical parameters are

fixed by the matching conditions for the initial and terminal projectile

velocity -- which automatically insures the identity of the impulse and
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momentum change for the striker. Thus, only two constants need to be deter-

mined from the position data which was accomplished by a computer progran

employing a least mean square fit requirement (9). Typical results for the

two striker geometries are exhibited in Figs. 9 and 10.

Perforation by both sphere sizes occurs by tearing and separation of a

cap whose shape conforms closely to the configuration of the ball. The plate

initially deforns in the same manner as for non-perforating impact at lower

velocities, but as the plate cannot absorb the larger amounts of energy

transferred with sufficient rapidity, the ultimate stress is reached

and fracture of this cap, apparently by shear at 45 0 to the deformed plate

surface, takes place. Both the cap diameter and mass of the plug increase

with increasing impact velocity, while the change of momentum and reduction

of cap thickness decrease, all indicative of less severe overall loading of

the target at higher speeds. The tangential strain at the cap tip varies

from 8.7 to 7.3 percent over the velocity range tested, corresponding to that

at the ultimate tensile or ultimate shear strength under quasistatic conditions.

This suggests the existence of a strength criterion for the perforation

phenomenon in this case.

Strain gage results show a propagation velocity of about 730 ft/s for

the peak of the pulse whether or not the plate is perforated; this is also

the value of the plastic hinge velocity for the unperforated samp'les in the

central region, obtained from camera data, while displacement gages farther

out yield a value of 390 ft/s at a radius of 5 in. In contrast, the hinge

ring generated under conditions of perforation propagates outward with a

speed decreasing from a value of 13,000 in/s at the origin (compared to

12,000 In/s for the 1/4-in. diameter sphere fired at a velocity of 659 ft/s)

to 11,850 In/s at a distance of 1.73) in. from the center, indicating the
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dependence of this speed on loading rate. In Fig. 7, perforation occurs at

approximately 95 i is, substantially beyond the value of the maxim.um force of

1500 lbs. at about 47 ps based on Fig. 9. This peak force compares to a

value of 1165 lbs. required to statically perforate such a plate with a

1/2-in, diameter sphere. Impact at velocities just below the ballistic

limit furnished identical deformation patterns for both 14-in, diameter

clamped and 4 ft. x 4 ft. freely suspended plates, indicating that plastic

flow was confined here to a region smaller than a 7-in, radius so that the

boundary had no influence on the phenomenon.

The plate behavior under attack by the conical-nosed projectiles is

significantly different, exhibiting piercing followed by radial fractures

with the formation of petals, ranging in number from four to six. These

fractures also occur at 45 0 to the plate surface, suggesting a shearing type

of failure. As shown in Fig. 8, at t =75 p~s, piercing commences for this

striker geometry when the slope of the plate at the tip of the projectile

has attained the magnitude of its half-cone angle. Thus, in contrast to th~e

strength criterion apparently controlling the event for the case of blunt-

nosed strikers, a geometrical requirement appears to govern initiation of

piercing for sharp-tipped projectiles, with subsequent hole enlargement

resulting from the outward push of the diverging portion of the striker.

The momentum drop of the cylindro-conical penetrator is substantially

smaller at comparable initial vclocities than for a sphere of the same

diameter. This results in less severe loading of the target as manifested

by a smaller outward spread of the plastic zone and lower value of the peak

force, about 630 lb. for the case shown, in Fig. 10 where, moreover, the peak

force occurs after commiencement of perforation, in contrast to the spherical
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projectile situation. The propagation speed of the plastic hinge was found

to be nearly constant at 463 ft/s, also significantly lower than correspond-

ing values for spherical impact.

A second group of tests was executed with an evacuated 50 caliber powder

gun capable of firing 0.375-in. and 0.25-in. diameter steel spheres with the

aid of a sabot at velocities up to 8500 ft/s for the smaller projectile

Initial and final velocities of the projectile were measured with two sets

of vccitj coils and the event was observed photographically by means of

a six-frame Kerr cell camera using a focusing shadowgraph back-lighting

scheme. In general, an adequate photographic record of the perforation

process for a particular set of projectile and target parameters required

interpolation of data from several rounds. Radial strain gages were

mounted on both impact and distal faces of the targets outside the plastic

zone, and representative targets were sectioned to provide a contour of the

deformation and crater produced; crater dimensions were ascertained for most

of the tests.

Targets consisted of 12-in. square plates of SAE 1020 steel, both large-

grained and small-grained, SAE 4130 quenched and tempered steel (armor plate),

and 2024-0, 2024-T3 and 2024-T4 aluminum. The thickness and mechanical

properties of these substances are presented in Table 2. The plates were

frequently tested several times with impact positions sufficiently far apart

so as to avoid interference from the effects of a previous run as well as from

the plate edges. The samples were clamped at two points of a single edge

onto a rigid stand and placed centrally in the path of the projectile, at

least for the initial impact on the specimen.

Fig. 11 presents photographs of target sections struck by 1/4-in. diameter

steel spheres at velocities of about 2900 ft/s which bulged, but did not
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perforate the steel targets. Fig. 12 exhibits the impact and exit sides and

sections of steel and aluminum targets perforated by this striker at an

initial velocity of about 2800 ft/s. The first figure shows the highly

strained cap removed from the thin aluminum target, essentially a continuation

of the process occurring at lower impact velocities, with a thinning of the

plug near the edges and ring-like petal formation occurring on both faces,

a curved cross-section at the impact side and a straight lip on the distal

side. Caps were obtained for all thin targets struck at this velocity, but

the fragment sphericity decreased with plate ductility. The plug punched out

in the thicker plate is both fractured and severely flattened; the target

exhibits thickening in both directions with minor ring-like petalling on

the impact side and major effects on the exit face. Bending of the plate,

if it occurs at all, is confined to the region immediately exterior to the

crater; plug formation involves compression and shear, the latter also evi-

dent in causing a portion of the cap fracture for the aluminum plate.

The high-velocity data shown in Fig. 13 exhibit some ring-like fragmenta-

tion patterns for both targets, distinctly evident in the case of the alloy

steel plate. These are indicative of shear failure, but the large rings

punched out in 0.25-in, thick coarse-grained SAE steel plates are the result

of tensile rather than shear failure. Sections of the mild and alloy steel

targets with embedded projectiles fired at speeds of about 2900 ft/s, Fig. 11,

show significant petalling, flattening of the projectile. and a bulge on the

distal side. However, the alloy steel severely deformed and cracked the

striker and also exhibited a smaller bulge on the distal side, by virtue of

its greater resistance to perforation, but with more extensive plate bending

than found in the case of mild steel. These patterns portray the effect of
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the dominant stresses active in each of the situations depicted.

Strain waves propagating outwards from the crater show the presence of

an initial symmetric component followed by an antisyrmetric pulse. It was

found that the m-,aximum symmetric strain at a given position decreases slightly

with impact velocity until the ballistic limit is reached, beyond which it

increases, whereas the maximum bending strain acts precisely in opposite

fashion. Close to the ballistic limit, the rise time of the symmetric strain

component was about equal to the perforation time (based on an average projectile

velocity), whereas at substantially higher speeds, this rise occurred in about

half this interval. The time of occurrence of the peak antisymmetric pulse

was found to be independent of initial projectile velocity. Both peaks de-

creased approximately exponentially with distance from the impact point. The

maximum symmetric strain in both thin and thick targets decreased by an average

of about 65 percent from the peak to the minimum perforation velocity for

the present tests, whereas the corresponding maximum antisymmetric strain

doubles over this range. Thus, the radial motion of the target due to the

increasing size of the hole becomes more dominant at higher velocity, while

the effects of bending diminish. Still, at these speeds, both of these

manifestations can be shown to be very small in any energy balance of the

process. Although the perforation process occurs primarily by shear, the

characteristics cited do indicate that at least some initial portion of the

process takes place as a hole enlargement.

Fig. 14 shows the results of tests designed to recover the plugs separated

from the target plates. The central plug thickness was found to vary inversely

with impact velocity in the regime just above the ballistic limit, levelling

at some asymlptotic value beyond a certain threshhold. Due to severe
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fragmentation, the cap thickness was found to vary across its width with the

maximum dimension at the center for the more ductile materials, and either

a uniform thichness or larger at the edges for the more brittle materials.

A plot of the velocity drop Av as a function of initial velocity v 0

is presented in Fig. 15. All targets exhibit a drop in this velocity dif-

ference just beyond the ballistic limit up to a critical value of initial

velocity beyond which this quantity increases again.

-Al physical quantities measured, the terminal projectile velocity,

the thickness of the separated cap, strain gage data, the pictorial history

of the process and post mortem examination of sections support the observa-

tion of the change of the deformation pattern of the plate from dishing to

punching corresponding to a change of the dominant mechanism from bending of

the plate to compression and shearing. At higher velocities, fragmentation

of the plug occurs, but the terminal velocity of the plug and the projectile

are nearly the same over the entire range of test velocities. Both tensile

and shear failure of the plug were observed in steels subjected to high

impact velocity, the dominant pattern apparently depending on heat treatment

(or ductility) of the target.

An experimental investigation of the deformation and mass loss of cylin-

drical projectiles has been executed in conjunction with the modelling of the

process utilizing a procedure (4) that employs elastic and perfectly plastic

wave propagation concepts developed earlier~l)l) With increased impact

speed, during plate perforation, such cylinders acquire progressively more

rounded fronts as well as both shorter undeformed and overall lengths;

mass loss was not found below a certain velocity, but increased beyond this

threshhold. The terminal shapes for a typical experiment are presented in
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Fig. 16; corresponding results involving only slight Penetration Ji-hour

perforation, against a harder and thicker target exhibited greater flatten-

ing of the projectile nose, substantially shorter terminal lengths and

rearward curving petals extending outward from the approximate region of the

original projectile diameter (4 ).

CRITICAL PIRAMETERS OF THE PROJECTILE/TARGET CONFIGURATION AN1D DEFOR>PATIOl

ME CHAI I SM

For the projectiles considered here which do not contain warheads, lallistic

performance depends upon initial velocity, orientation relative to the target,

shape and appropriate material characteristics. Ideally, the more sharp-nosed

the projectile, the higher the initial velocity, the longer the rod, and the

more normal the orientation, the greater will be the efficiency of penetration.

Impact at sufficient obliquity may not only result in failure to adequately

penetrate the target, but may even result in ricochet, in accordance with the

data shown in Fig. 2; in addition, the projectile may both pitch and yaw,

severely reducing the penetrability of the striker. Efficiency increases

with both length and density of the projectile, since this will concentrate

the maximum energy on a given target area. However, increased length intro-

duces both instability in spin-stabilized projectiles and the additional

possibility of bending mode failure. Reduced risk from such fracturing or ty

shattering in the contact zone, amounting to defeat by the target, demands

both high strength and substantial ductility of the projectile material, repre-

senting contradictory requirements that require optimization.

The targets considered here are flat plates that constitute or simulate

elements of larger structures; curvature or irregular profiles are not
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expected to have a significant influence on the phenomenon except very

close to or below the ballistic limrit. The thickness of a target is clas-

sified in terr.,s of the number of traversals of elastic waves therein normal

to the faces relative to one transit in the projectile. A thin plate is

defined, somewhat arbitrarily, as one where this ratio is greater than 5;

this value is chosen to insure the maintenance of a nearly constant stress

level in the plate during contact. Intermediate targets are those with

vlz; of this ratio between 1 and 5, where the process is influenced by the

presence of the rear surface, but without achieving dynamic equilibrium.

Thick targets, on the other hand, exhibit ratios of such traverses less than

unity, so that distal surface reflections return no faster than those in the

penetrator.

The resistance to penetration by targets increases with increasing

density, thickness, acoustic imipedance and strength. Frictional effects for

sharp-pointed projectile penetration' of thin plates have been found to repre-

sent less than 3 percent of the total energy (3, although this proportion

may loom larger for thicker plates struck at speeds just above the ballistic

limit.

The experim~ental results presented indicate the deformation patterns

that must be considered both in the striker and the target under conditions

of normal impact at velocities at and above the ballistic limit of thin and

moderately thick plates when initial speeds are restricted well below thc, e

of the hypervelocity regime. As a first approximation, the striker might

be considered as rigid, particularly when impinging upon a much softer material,

but the evidence is overwhelming that significant plastic deformation of the

projectile occurs in most practical circumstances, and ablation or extrusion
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generate increasingly larger iass loss at successively hijher velocities.

Target deformation is more complex: For thin, relatively soft targets

struck at velocities just above the ballistic limit, there is substantial

plastic deformation outside of the central crater region resulting from the

separation of a cap with a shape closely conforming to that of a gently

curved nose of a hard projectile. This slug is produced by shear with

minimal petal formation, whereas petalling is dominant in the case of sharp-

ne e4 strikers. Initial fracture occurs in the case of cap form.ation when

some critical strength value is exceeded as the result of projectile motion.

but is manifested as the result of a geometric criterion in the second

instance, i.e., when the slope of the plate deformation at the impact point

begins to match that of the projectile tip.

The perforation of intermediate targets is substantially more complex,

involving initial compression of both striker and target, subsequent shearing

of the plate, dishing of the target outside the contact region, and deforma-

tion and possible fracturing of the striker. The plastic distortion of the

projectile produces a shape that bears some similarity to the form of a

high-speed jet entering a thick target (1 ). The patterns of deformation

described above are represented in Fig. 16, while Fig. 17 presents photographs

of the successive deformation of a 22 caliber, 11 grain steel cylinder fired

against the same target plate at increasingly higher velocity.* Furthermore,

the crucial importance of material characteristics is demonstrated in Fig. 18 where

the deformation pattern of both striker and target is drastically damaged by merely'

increasing the hardness of the former, all other parameters remaining the sane.*

*R.F. Recht, personal communication.
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Clearly, a suitable analytical model must not only consider appropriate

material properties but also must encompass a variety of mechanisms, some

of which might te neglected for certain regimes of initial velocity and/or

projectile target configurations.

PLATE DEFORMATION DUE TO BULGING AND DISHIN!G

This pattern which assumes maximum importance in the velocity regime

just below and just above the ballistic limit, may well represent an even

more important target failure process than the formation of a crater, partic-

ularly when it spreads substantially outward from the impact point. At a

given velocity, this effect is the larger the smaller the thickness of the

target. The analysis of the plate deformation pattern such as that shown in

Fig. 16b is generally carried out by the application of the theory of

plasticity, frequently with the neglect of elastic effects, a constitutive

assumption called rigid-plastic. Moreover, in many instances, vwork-harden-

ing is ignored so that the material is described as rigid/perfectly plastic.

A substantial number of analyses have been carried out for the case of

impulsive or blast loading on a uniform plate of thickness h0  and mass

density p. As shown in Fig. 19 for the case of axisymnetric loading under

uniform distributed pressure, p, per unit area of undeflected plate of

initial thickness h0 , the equilibrium equations in polar coordinates

r and 0 with rotational inertia neglected are

(a^iN r)' -eLO' N -arao Q/Rr - ar p sin ¢ + PhoeaOr ( sin ¢ - pho OrU cos = 0 {?

(aeQ)' + ar o r + - r  cos N6 + rhoar g cos , + phoarU sin = 0 r,

(aM.)' -a0 Ile ctr c±Q= 0 (4)
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where a prime denotes a derivative with respect to r and a dot a

derivative with respect to time. Here, Mr, M0  and N r$ N0  are the

radial and circumferential bending moments and radial and circumferential

membrane forces, all per unit length, Q is the shear force per unit

length, and u and w are the deflection along r and normal to the plate,

both in the undeformed state. Further, ¢ is the slope of the plate midplane

in the plane passing through r = 0 and normal to the plate surface, and

Rr and R9 are the principal "dii of curvature. The latter and quantities

Or and a are defined in terms of radial and circumferential strains c r

and e as

I 1 + E ' .= r + u r (I + E0); R- ¢' (1 + Er); ( sn t)r (5)

Rotational inertia may be included by use of the equations of motion given in

Ref. (19). Existence of large strains and deflections dictates application

of Eqs. (2) - (5).

For small strains and moderate dcflections, Eqs. (5) become

ir I; = r; L I sin' R r , = cos¢ (6)

and strains e r and c and curvatures Kr and K0  are given by

2 ,U
r U, + W' or r u+ w;e' - r or C £r  r;

Kr : ( + u) w" - u" w' or K r (1 + u') " + ;'w" - u w' - u' ;

W W
K : T or - (7)
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With the further assumption that cos 1 1 and sin - w', and

neglecting small quantities in Eqs. (2) - (4), these relations may be

written as

rNr' + Nr -N = rpw' +phorww' +phoru (8)

rMr '' + 2Mr  - M - 4Ngw'/h o  - rp -horw + hopruw (9)

upon elimination of shear force

Q = 1r Mr' -
(10)

For a solution of the problem, it is necessary to employ a four-dimensional

yield surface characterizing the relation between Mr, MO, Nr and N8. While

interaction exists between all four variables, it has been found expedient

to assume a separate Tresca yield condition - which stipulates initiation

of yielding when the maximum shear stress attains the yield value - for the

momc-- and for the in-plane forces (20) , as shown in Fig. 20. This approxi-

mation provides an upper bound to the solution for the case of a uniform shell,

while a similar set of yield curves reduced in size to 61.8 percent constitutes

a lower bound (21). The size of the hexagon, i.e., its intercepts along the

axis is characterized by the fully plastic moment ly = oyh 0
2 and force

Ny . Oy h , where ay is the yield stress in simple tension If ay 0

(or My = M0 ) is a constant, the material is perfectly plastic; if ry increases

with the amnojnt of plastic work performed, the material work-hardens.

-300-



Solutions for rigid-perfectly plastic materials have been obtained

for a number of cases involving both the concept of travelling hinges and

expressions for the deflection separable in time and the radial coordinate.

In the first case, radial motion was neglected; it was further assumed that

bending effects predominate during the hinge motion, while membrance action

governed beyond this phase until the plate motion had completely ceased.

The analysis of the response of a rigid-viscoplastic strain-hardening annular

p!htc loaded impulsively by a linear nitial velocity profile indicated that

strain hardening is important, rate effects play an even larger role, and

the influence of mermbrane forces is dominant in reducing permanent deflections

over a wide range of loading parameters and up to deflections of twice the

plate thickness.

Several approaches have also been developed for the delineation of plastic

deformation of plates under impact loading by cylindrical projectiles, of

radius Rb, although none thus far have incorporated the basic equations of

motion for the target involving large deflections, as given by Eqs. (2) - (4).

A simplification similar to that employed for Eqs. (8) and (9), but involving

retention of the Nr term and assuming no motion in the radial direction

yields

I d [rQ +rNr dr [r I~ + Mr- +N aw o h ZA (11)1 d aw 1 .l d 'ra oatw I
F Tr rr + r r  r = [r r + r -M 0 + rN r  T] 0 pho

that incorporates both bending and membrane forces, with the maximum va!ies of

Mr and M. given by 1 oyho 2 and that for fr given by hoc Y .  In the general
4

case when both effects must be considered, the admissible velocity (or defor-

mation) field for each stress component must be determined for the various

segments of the Tresca regime and combined to obtain the overall deflection.
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The waves generated in the target by the impact of a non-perforating

rigid projectile of radius Rb will divide the plate into five zones when

analyzed in terms of Eq. (11), as indicated in Fig. 21: (1) An outermost

zone r>r C = Rb + cDt is beyond the front of the elastic compressional

waves travelling with dilatational velocity c0 = r'+ 2G)/p (with A and G

as the Lara6 constants ) which is completely stress free, (2) the range

rS = Rb + Cst <Y, <rC consisting of elastic compression without transverse

deflection, with shear wave velocity cS = (G/p)-, (3) the annulus

rB = Rb + C wt <r<r S, where only elastic bending occurs, with cw  as a plastic
wave velocity (oy/o), (4) the domain Rb<r<rB where plastic deformation

takes place, and (5) the region r<Rb which travels with bullet velocity.

Elastic deformations are neglected relative to permanent deflections; thus,

only zone (4) requires further analysis for the determination of plate

response.

Experiments performed on rigid 1/2-in. diameter projectiles with masses

from 15 - 100 g fired against several types of aluminum alloy plates up to

3/16 in. thick at initial velocities v. from 83 - 335 ft/s indicated values

of-L between 0.1 and 0.2. On this basis, it is considered that the effects
of membrane action due to N overshadow those of bending, which is neglected

r
in Eq. (11). Thus, the motion of the plastic zone (representing yielding

throughout the entire plate thickness ho is given by the wave equation

ww( ) -- 2 - cw  (12)

-302-



The initial and boundary conditions, including the joint rotion of the striker

and target in the area of contact, r . Rb are given by

w(r, t) = 0; (r, t) = 0 for r > rB (13)

2 Rb Jyho  -( b + iTR
2Oho) T for r = Rb (14)b 0h b bo 0

0 r>P
w(r, 0) = 0, r >Rb; wdr, 0) = vo , r.<R b (15)

A finite difference solution of the equations presented 4as in very satis-

factory correspondence with data obtained for a suitable preselected regime

of physical parameters, but for thicker plates or low-strength materials,

divergence of predicted and measured deflections suggested the need for

inclusion of both elastic and plastic bending effects for better correlation.

In contrast, deformation due to projectile impact of thin plates in

other velocity regimes or under conditions of perforation frequently has

been treated by neglect of membrane effects and inclusion only of bending.

A model based on point loading will lead to a singularity at this position

both for a perfectly-plastic or a work-hardening solid; in consequence,

representations of this type hypothesize or specify a central portion of the

plate, in contact with the projectile, to be perfectly rigid. It is

generally assumed that the region of the target touching a flat striker

impinging at normal incidence is considered to be rigid. An analysis of

the motion under these conditions conceived by Prof. J. L. Kelly* (23) is

based on the concept of both stationary and moving yield hinges in the plate;

the motion of the plate is derived from the kinematically admissible fields

deduced from several regions of the Tresca yield criterion that is assumed

epartment of Civil Engineerinq, University of California, Berkeley
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to define the plastic behavior of the target material.

For the solution, it is assumed that three yield circles are formed

as the result of the impact as shown in Fig. 22: One at the edge of the

rigid central region r = Rb in contact with the striker, one at an

intermediate position r = rl(t) in the deformed zone, and one at its

edge r = R(t) beyond which the plate acts in a rigid manner. Certain

continuity conditions obtain for w, its tine and spatial derivatives,

and for W -and ?24) (25) The quantities w, ;i, and M1r are continuous

in r and t; w' ; w", I', w and M 0  are continuous in t and piece-

wise continuous in r with discontinuities occurring at the hinge circle

of radius ry(t); jumps in these quantities, symbolized by A{ must

satisfy relations

I{'1 + y(t) A{w 10; A{W} + ry(t) 0;{w'}rd0; (t) 'Mr "= 0 (16)

For a discontinuous loading function, all quantities except w and w must

admit of tine disccntinuities.

The first hinge circle at r = Rb is located at A in the Tresca hexagon,

Fig. 20a; within, the plate is rigid and moves with projectile velocity

vb(t), with vb(O) = vo . The second, at r = r, is located at point B of

this diagrar, and the outermost hinge circle at r = Rt(t) occurs at

point C; in between, plate motion is governed by the segments AB and BC,

respectively. Here, the curvature rates r and C,(, defined by

Kr - " " r, t); K0 _ e r t) (17)

r
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are governed by the condition of normiality for these quantities relative

to the yield surface. Thus, as indicated in Fig. 22, the conditions for

the various regines are

r< Rb (rigid): w(r,t)= ft vb(t)dt; w(r,t) = vb(t); w(r,t)= vb(t) (18)

Rb_< r <rl(t), (Region AB of Fig. 20a); Kr = - w=(r, t) 0 (19)

rlIt)< r< R(t),(Region BC of Fig. 20a); Kr + K=- +1'' +l-')=0 (20)
r

r>R(t), (rigid): w(r, t) = w(r, t) = w(r,t) = 0 (21)

During the application of a positive pressure against the plate by a projectile,

the hinge circles remain stationary, while rl(t) and R(t) move outward

upon load removal until the plate has attained its terminal deforration.

The displacements in regions AB and BC are determined by integration of

Eqs. (19) and (20) and use of the appropriate boundary conditions. This

yields for the velocities in

Region AB: ;(r, t) = vb [, r 1(t) + L}IL -1)/ [Zn r1 (t) + Rb - 1] (22)JTt r(tT tJ r(f
R-7 i -l/[nrt(t) rb1

Region BC: wr, t) = vb [zn r(t) - zn Rb(t)]/ [kn r (t) + Rb - 1] !23)
Rt( t r,~

The acceleration fields are obtained by differentiation of Eqs. (22) and

(23) with respect to time; for stationary hinges, rY(t) = Rt(t) = 0.

Plate velocities and accelerations are functions of projectile speed and

hinge circle location; for moving hinges, the accelerations are also

functions of the hinge circle velocities.
w30. I
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The problem is solved by substituting a prescribed force history

Fit), or its equivalent pressure, p = F(t)/TrRb 2, into the equation of

transverse motion which yields the shear as

Qr [p - phoW(r, t)] rdr ( - p +'pho (24)
r 2

and a second integration involving the moment equation (9) with stretching

forces and in-plane motion neglected over both regimes AB and BC provides

the expressions determining the hinge locations r1  and R. Upon load

removal, a similar procedure yields the velocity histories for the inter-

mediate and outer hinge when the terminal conditions at the end of the

stationary hinge stage are employed as the initial conditions for the

moving hinge phenomenon. If the plate loading condition is given in

terms of the mass, radius and initial velocity of a projectile, an iterative

calculation process is required at each stage of the motion to insure that

the pressure exerted by the projectile on the plate produces a velocity in

the target equal to that of the rigid projectile whose deceleration is de-

termined by Newton's law.

A somewhat different interpretation of the plastic deformation of a

thin plate (4) , due to the nonperforating normal impact of a flat projectile

is based on rigid-workhardening plate behavior as deduced from a linear stress-

plastic strain curve. The deformation pattern shown in Fig. 23 is assumed

where a central yield hinge encloses a rigid region of the plate of mass

PirRb 2ho from which a plastic shear wave moves outward with constant velo-

city cS = (GP/p) . From conservation of momentum, the initial velocity

of the projectile mass and plate plug rpRb 2h is given as

Vi V/(I + Irp R b ho ) (25)0 mb
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The ratio of distances traversed by the wave and plug in unit time is

vi/cP which equals initial shear strain yi resulting in material harden-

ing; this zone will not strain further unless the applied stress 7 exceeds

the level corresponding to - i()Yi ). Here, Ty is the initially attained

yield stress in simple shear, taken conventionally as ty = c,/vT (which

is strictly true only for the von flises yield criterion where yielding starts

when the energy of distortion attains a critical value). The outward motion

of the hinqe results in successively lower stress levels in the material;

but at any time t, the velocity of the entire plastically-deformed annulus

r = R behaving as a rigid mass is a constant, v(r) = constant = C(t) = vi.

The decrease in the velocity of this in time dt is due to (a) the commun-

ication of an impulse F dt = 27rhduy. dt to the rigid exterior portion

of the plate and (b) the growth of plate mass dm acquiring motion. The

momentum balance for this system is

(mb + 7pRb ho + m)v + F dt with dt = dr/(cS)

where m is the mass of the plate between Rb and R.

Use of Eq. (26) and integration over the region from Rb to r yields

for plate velocity v

r2

(rh Rb2) (1 - r2  P I + (/B)(l- 2 )
v/v0.. =0YbRb /J"b_________b

I + (Tr2pho)/m b I + (r2/Rb2) (27) wher(

- rPhoRb1b; = PCsVo and r = Rb + (cs)t (28)

T.

The displacement of the plate at time t when the plastic zone has extended

r = R is
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r 
2

w vdt PfR b dr or w L R
s R1 + br1Rb

2 )

- /T(l + + ) (tan- V- Rb tan i Rbj(

These solutions apply unless the stress at any position r exceeds

that experienced during initial work-hardening upon passage of the plastic

wave front. The stress is

r (mr ) piR h0 + ) dv (30)

2Thr dt

from which

rj /Rh [1 + (r/Rb) 1
r/Rb L TFOR

where T is the shear yield stress attained initially. Inspection of
1

Eq. (31) indicates the validity of the assunption of the propagation of a

single hinge circle provided the ratio 7TphRb 2 /m exceeds 1/3; otherwise the

ratio of Eq. (31) exceeds unity, first attained at the edge of the projectile,

and a second yield hinge will propagate outward at that time. Experirtental

results support the conclusion of the analysis which is considered to apply

when menbrane stresses can be neglected and surface cratering is absent.

The maxinum central deflection of elastic-perfectly plastic or linearly

work-hardening plates has also been calculated on the basis of an energy

balance, but required an assurmed defomation pattern of the target that was

based on experirental results.(8) Some of the mathematical difficulties

-308-

: _- A . L



encountered in an analysis of proiectile loading of elasto-plastic plates

have been surmounted by inclusion of rate dependence in the constitutive

relation, (26)-( 2 8 ) exeplified for the uniaxial case by

T v

where T* is the viscoplastic relaxation tire. The velocity v of the

midsurface of a viscoplastic plate of radius Rt . restrained at t be edyes

and subjected to central impact by a projectile under the assul:iion of

small deflections and neglect of membrane forces is governed by

4 313 Dv m b 3v pS L3

Vv _oo  (1rhb 2 o Dtr+- + P) 0, 0 < r < Rb  '3)
2h0M0 T Rb 2 tr<R b

V4 v + 3,orT p Dv = 0, Rb < r < Rt )

h0

where 11o = -co is the unit perfectly plastic yield moment and pS

is the static pressure distribution corresponding to dynamic loadint) p, or

collapse load, amounting to 4hM o/v3- for a concentrated load at r -: 0.

Then Eq. (33) may be replaced by the relation

2hirOTn( L [V2v]) - VLimr o  27rV 
atr s

Eqs. (34) and (35) together with initial conditions due to projectile

impact and bou ,dary conditions for a clamped plate given by
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v(o, 0) = vo; v(r, 0) = 0, r / 0; v(Rt, t) = 0; :-v (Rt, t) = 0 (36)

can be solved approximately in closed form (29); however, such solutions

are not applicable for very thin plates. Here, a solution for the velocity

(28)
in the laplace transform space has been obtained as

4 0 /M b v - kei (nis r)
v(r,s) [1uti/--- - --- 0~ ke

- (b,+s ) s

where kei x = Re I HI)(xe-4---) 1 is the Kelvin function, HI() is

the Hankel function of the first kind and order one, s is the transform

para ;cter, a bar over a symbol denotes its transform, and

'4 /73-p b, = 16ph 0
21 (1 7

0  b

This relation can be numerically inverted to obtain v(r, t) and the velocity

field is integrated to obtain the deflection history.

The solution of Eq. (37) at the origin r = 0 is

v 4 TM o / b  ( 31- -

V_ (0, s) 2 o (3t})
sl(b, + s2) S/2 (b1+ s2)

whose inversion yields

[ 4%M 1 blt 4M
v(O-t) : 0 - e erfc (bjt ) + 4 [1 - 2b 1 (-) I (;O)

0 2,tj 2 1

3mJb b / 3 mbbl
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Integration of Eq. (40) yields

w(,t)= (vo - 4-2Mi [1 e b2t erfc (b1tl) + t Y21
2 ib 1 b617 bi Tr 2]Vjmb b,1

3/2
o4rNt 4r% t (41)

Ylbm 3V bt l

while differentiation of the same equation provides the central plate

acceleration as

b1
2t

T(O2t) = (v 0 b, 2 e erfc (bjt ) b 47M0  (42)
V'mb b V17t mb 1 v-t

Eq. (42) exhibits an infinite deceleration at the instant of impact,

a result inherently due to the choice of the material behavior and the require-

ment that the velocity at the center change instantaneously from v = 0 to v0 *

This deficiency can be circumvented by treating the central region of the

plate as rigid under projectile impact, employing conditions such as Eq. 25,

and considering viscoplastic deformation for the plate outside the contact

region. It should also be mentioned that the viscoplastic theory is singular

in that it does not reduce precisely to the rigid-perfectly plastic case as

T*.O, corresponding to the absence of strain-rate effects. Furthermore, in

view of a constant collapse load in Eq. (40), the velocity will decrease

monotonously with time; however, the result has physical significance only

up to the instant tf when the plate center reaches zero velocity, de-

termined implicity from this equation by setting v equal to zero:

(vo " 4rM 0  ) e ti1tf erfc (b1t) + fb[1 - 2b f (_)j= 0 (43)
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PENETRATION MODELS INVOLVING AXIAL AND RADIAL PLATE MOTION

Pointed projectiles displace a significant amount of target material

radially after penetration is initiated at the tip; the further process of

separation consists either of (a) the enlargement of a hole in the target

during projectile passage, or (b) the development of radial fractures travel-

ling outward from the piercing point to form petals. Both events primarily

occurring in relatively thin plates have been modelled in terms of displace-

ments of a rigid/perfectly-plastic target material of tensile yield strength

S0" A quasistatic analysis of symmetrical hole enlargement provided the work

performed to expand a pin hole to one of radius r as (30)(31)

W = 1.33-r 2ho0  (44)

However, most penetration phenomena for thin and moderately thick sheets

under both quasistatic (32) and ballistic penetration speeds occur in the

antisymmetric mode, where the material of the crater is displaced axially

and only on the exit side. For this case, the corresponding work performed

is much smaller, i.e.

VI hor2 hoo (45)

Another analysis that included dynamic effects, but specifies that the

enlargement process occurs initially at constant velocity v0 and subse-

quently at constant acceleration, utilized a similarity solution to express

hole radius r and the local thickness h as a function of radial particle

velocity uby(3 3 )
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h / c w  t . ..........v)0(/C W

r u - r2C tanh [ 2 (U-v )/C " h . J°cw t srh (Vo_,/)/(4u)
t w o w h0  (v /c W)cosh '(v0 - j/c2c

where c is once ore ,--p

The antisyniietric pattern depicted in Fig. 24 is not found in practice,

even for thin plates struck just above the ballistic limit, but has been

analyzed on the basis of an energy balance for a rigid/perfectly-plastic

(34)material and its predictions have frequently been cited in the literature

If V1 is designated as the crater height and z* the distance from the crater

tip in question, and if the radial stress is neglected, so that an approxi-

mate uniaxial state of stress exists, then incompressibility dictates that

h/h= (r/Rb)' =(z*/Yl)l and H = 0. 75Rb, h =.15h0 (/R ()

with the static work of plastic deformation given by Eq. (45) for r Rb.
2

The force acting on the mass m* = ,i horb displaced at time t is

2

F =  ni d rb + dni* drb ( 4)

with tf as the time of final hole size attainment; the dynamic work of

perforation is

i Rb(tf) r JRb(tf) [d1(4)
dr b 0 rb b
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Typical sharp-tipped projectiles are the conical and ogival nose, of

length L N 9 preceding a uniform cylindrical base of radius Rb; these shapes

are defined by

rb = (Rb/LN)z = z tan a for the cone and rb= Rb sin for the ogive (50)

where a is the half-cone angle. The projectile velocity during penetration

may be obtained by equating (49) to the change of kinetic energy of the

projectile l R b l m (dz) 2  using either of the shape functions given

by Eq. (50). Ref. (34) calculated the total work performed for the two cases

for the unrealistic assumption of a constant v as

W=p _h R[vo bR + 1 J (cone) and (51)l l o  R -  LN /o

W = ffh o Rb 2[T (o b)2 + 1 a °  (ogive) (52)

If, on the other hand, the conical projectile is assumed to have a constant

deceleration calculated from the work-energy principle as

-w = ,rRbho tan a (i o + Qvo 2 tan fB)/(rnb + h0Rb 2ptan2 B) (53)

then the tntal energy loss is given by mbwRb/tan , and the deceleration

of the ogival projectile could be similarly expressed, albeit in much more

complicated fashion.

A description of the petaling process in the absence of plugging has

been provided that neglects static strength effects and invokes a monentum
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balance, but requires an a priori stipulation of both the defoi:,ition

pattern of the plate as well as a radius Rt beyond which the target is

not affected by the action of a striker. A schemnatic of the model is pre-

sented in Fig. 25; the principal mechanisms of energy absorption are

fracture and plastic deformation in the zone r < R. Clearly, Lhe credi-

bility of the results depends upon the accuracy of the as-lmed plate

deflection. Fracture directions at the tip have been f..uiid to he related

to the direction of planar isotropy of the m).iaterial. ) ( ",) (  The

momentum balance in the direction of m: otion z of a nonoally-iiIIinyJing

sharp-tipped projectile is given by
(3 5 )

11 -2r. 0  R r r .. dr
mb b(vo - v) me(Z)v with 'Ile -- 2(rh°o r)db ' ~ o - r -= e z3 -fIz .

where m e is an effective target mass and w(ro, z) is the axial displaceient

of a deforried plate elem;ent initially at ro. This relation can he solved

for any assumed target deformation. As an example, if it is assumed that

the plate conforms to the shape of the nose of a penetrating conically-

tipped projectile, as shown in Fig. 26, involving no stretching of the petals

and thus ignoring material strength effects, the plate defoiiation %-I is

given by w = (z tan 6 - r) cos and the velocity drop is

V oaph 2Av . . . . [z tan (] sin 6 ormb

(Av)f V 0  Vf -.,Rb 2 v0 0
- _.....sin 6 for 1m b  vo0

Evn this r;ul-si-orpirical approach does not provide ,,eod correlat ion with

experimental data at impact velocities in the range just ab~ove the hallistic

limit, indicating the need of incorporatin(j strength paraieters into the
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momentumi balance. This can be effected by addition to the right-hand side

of the first of Eqs. (54) of the impulse commiunicated to the rigid plate

section at Rt. namely 2naph j Rrdr where c P= c W for a perfectly-

plastic material. The total line load per unit length F* at the base of

the petals is approximated by

* (phv~2 2 (6

inclied to the projectile axis at angle 74 - P ;ti sea~ae i

the hypothesis that the contact pressure between projectile and petal

vanishes.

Several at 1least partly ewirical equations have been sugge-S1od to

del ineate the force acting on the projectile wh.den tar get fai lure iiLiltes

at the tip of sharp projectiles, based on the s' Siwl.taneous ac tion of a

va riety of physical i-echani si.is that, ho~iover , uni forimly negleoct projec tile

defor;iation.(36)(37) One of these includes the contr ibut ions of coi~ipres-

sion (C), distortion (X), friction (F) anid inertia (1) anid specif'ies-, the

differential total force dF in termis of the notation exhibited in Fig. 25

as

dFdF dF f- (I - F f dF r bo tn/+sc? 2r

*(cosD r rb K) 4 4b 2 1 rb Uan~ lr btanit + tan 2 4 -, K

sinO c , )J
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where z denotes projectile position v D, = tan - ' drb i [ local' -~dz- i hloa

slope of the projectile nose at station rb(w) = r, with K - s,
b dz

as the corresponding curvature, and E is the specific target ;ur face

energy. The constants utilized were approximnated as bI  l d 1)2 2.5.

Friction angle C diminishes rapidly with penetration as the result of

temperature rise in the plate; the effect of plate distortion !,Is also

considered to be negligible. An even sinpler representation hils boen

proposed as

2 2 3

z_2
F = ar <z> [6(l - -) - 4BH( - k-) + pv2 ] ( :

that accounts only for i,,otion ic(qulired by the target and plastic ln,'nt,it io

characterized by Brineli hardness IffiT. Friction, tearing and wave effects

are neglected, and separation of the target and the surface of I1-, projectile

tip could occur.

Another simple prescription for such a force laW, inIvolving a )Ilic'l

bullet, that accounts solely for static strength and virtual mass effects,

frequently cited in the literature, is given by (39)

dF =  (PS + pv2  sin 2B) sina (')

Here pS is the average contact pressure required to perforate the target

quasistatically, empirically determined as 5.3h MPa for soft alul:iinum, with

h0  in rm. This parameter might also be derived from a slip-line solution

of the event for a perfectly-plastic or work-hardening solid. fhe fornm of

Eq. (59) is also valid for blunt-nosed projectiles.
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It is easy to criticize this approach as not fundamental, relying on

a number of empirical quantities, limiting attention to some effects while

neglecting others, and frequently requiring step-wise numerical solutions

in any case. However, the representation is usually based on some form of

physical model, the empirical parameters can frequently (or at least have

the potential to) be related to fundamental physical properties of the

system, and predicted results are often in good agreement over limited

ranges of the governing variables when the empirical constants are properly

chosen. However, it must be emphasized extrapolation outside such limits

usually is not acceptable.

F PLUGGING OF TARGETS

This perforation phenomenon is defined as the condition when a section

of the target involving the zone of contact and possibly also its immnediate

vicinity are separated from the remainder of the plate due to, at least

in part, the shear produced by the penetration of the striker. The most

elemental concept of this process involving only conservation of momentum

for the identical terminal velocity vf of a blunt striker of initial

length L 0  and density p0  is given by (40)

vf - PbL/(pbL 4 ph0) (60)

Vol

while a fluid model of the element resisting with force F =irR 2 pV2

yields a value of vf given by

V f aexp Ab 2TR pho/mb] (61)
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An energy balance including that of separation of the plug of mass m -i;OR Yn

from the remaining target, assumed constant for any particular target-striker

combination, and that expended in plastic deformation of the components to

permit the target and striker attaining a common velocity yields the final

velocity for normal impact as (41)

vf = b (V0  - V502) (62
mb + mq

For impact of such blunt cylinders at an angle of obliquity 9 , the

terminal velocity is expressed as

f = (vo2  v2)1 cosW*

1 + mb/mq

where the change in the direction of travel, e* is approximated by the

expression

sin 28* = sin2o (64N
(so)+ v v'5 )

+2 1
50 50 50

Consideration of only shearing in the plugging process leads to the

equation of motion for normal impact of a blunt projectile and associated

initial and boundary conditions

T

w r+ (65'
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0 , r>R b ; v(c, t) = 0 for an infinite plate
w(r,O) = i' r< Rb ; v(Rt,t) = 0 for a plate clamped at radius Rt (66)

and (mb + mq) = 2TrRb ho TY (67)

where the initial velocity of the combined projectile-target system, vi , is

given by vf in Eq. (60). Eq. (65) is a modification of Eq. (11) where the plate

motion was considered to be changed by membrane forces. The constitutive

equtions employed have inciuded that for a perfectly-plastic material, so

that Ty = o (42), a linear work-hardening solid (43 ) , a Gingham-type

material featuring a dynamic viscosity term v, given by (44) - (46)

2

= [sgn 'vV] _y + Y (68)
r-

elasto-viscoplastic solids (4 7 ), and empirical relations based on experi-

mental resjlts. In general, closed-form solutions have been obtained only

when severely restrictive assumptions were invoked, including such hypotheses

as constant projectile velocity, neglect of plug mass relative to projectile

mass, or neglect of target strength. Results not limited in this fashion

have been obtained by numerical techniques.

A relatively simple, yet reasonably comprehensive model for the per-

foration of both thin sheets and those of intermediate thickness by a

deformable projectile divides the process into three consecutive stages

(48) - (50)
as shown in Fig. 27. The first phase involves compression

and indentation of the target, terminating at an empirically determined

depth ho - h when plug shear is initiated. The second phase continues

the compression process in addition to plug shear and ends when projectile
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and plug attain the same velocity. The third stage involves only shear

and ceases upon complete plug ejection; all other effects are ignored,

including friction, tahget flexure, and wave propagation. Furthermore, the

deformation of the projectile, while permitted, is accounted for only in an

empirical manner.

During the first stage, the target material ahead of tile projectile is

compressed to its ultimate strength UC and a section of the target acquires

simultaneously some of the momentum transferred by the bullet, leading to

the equation of motion

F1 MtPC Av 2 _ A PA v2 + (m PA z) v dz for 0 t- z h - hIl t I - C u - UC = (mbo + u oz

Here mbo and Au are the initial mass and projected area of the striker, hl

the thickness of the target at the end of the first phase (substantially

equal to the plug thickness so that hI = hq), Cl  is a constant depending

on striker geometry accounting for virtual target mass which takes on the

values of , 1, and cos2
R for a spherical, cylindrical, and conical-tipped

projectile, respectively, and may be ascertained for other nose shapes.

However, the flattening of non-armor-piercing projectiles is so severe that

a value of unity is probably an appropriate choice for almost any unjacketed

shape. Di is the projectile diameter for each stage 1, 2, 3.

Integration of Eq. (69) yields the projectile velocity and a second

provides the displacement in quadratures as

v [{vo? + uc }{m bo/()Au 2 + C, 1C /2
-- -z + rnbo/P u  T < h (i
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t hz lo ~ dz (, I)t(z) =x dz or tj 0 ho I--

0 0

Substitution of Eq. (70) in Eq. (69) yields the force-displacmc-imt relation.

and use of Eq. (71) provides an implicit equation for the force history

that can be determined numerically.

During stage 2, the total force consists of conpressive, shear and

inertial components; the last tern acts on plug area A , whose diameter m,-,,

be approximated as that of the original projectile base, or else as varying

linearly with z from that value to the measured final plug base diameter,

if significantly different. A choice of C1 
= , corr,:sponding Lo a spheri-

cal striker shape in this domain appears appropriate, but resJUlts in a

sm. all discontinuity in force at the end of the first stage. The compressive

force is reduced from uucAq to zero in this interval, with an assumed

parabolic variation. The shear force at the plug periphery is considered

to be of the viscoplastic type represented by Eq. (63) with the shear

strain rate -y = v/ArS ,  with ArS as the width of the shear zone, also

labelled the radial clearance. This term can be ascertained either from

experiments or the analyses of Refs. (47) and (48), since the final results

are quite insensitive with respect to its numiierical selection; in fact, its

value was such that the shear force could be neglected during stage 2.

The complete equation of motion is given by

2

F2 (t) - CI pA v2 - (T Vr 7-)D 2 [z -(h o - h)]

z (ho - h0

•0 {Ih-)]r s for h° -h I  z h (72)
Ar S
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and the velocity during this interval can be evaluated from

dv 2 virD2 vz_ viiD2 (h - h1 )v
dj(Z):[-(l+ C1 )AqV - Ty D2 z Ars Ars

[z - (h 0 hI0 ] 2
+ T D2 (h 0  ho LCAq l h. (1 o 0 -1 q z)v ,

{l - 1/ C + Au h -v hI )

The effective mass at the end of the first stage is mel mo + )A 0 -

D2 is the cavity dianeter at the end of phase two, and the duralion of this
ho

interval can be deterrlined from the integral t2  (l/v) dZ.

During the third period, the projectile and plug move together Oue to
the action of shear stress T acting on the area A = in the

shear zone of dopth !,r S  dround the plug of the average cavity dici'iikc r

D2, taken as the final plug diamieter, governed by the relation

m2 dz* _F 3 = TA a- T + q z-h0AqY--
_ F (Ty +;) A* with z* = z-ho = yr s

dt

Further, the displacement for material failure, z* is reached at the

ultimate shear strain of the material Y = Zf/Ars beyond which no further

resisting force acts on the system. The solution of Eq. (74), with v2 f

as the velocity at the end of stage 2, is given by

T2A m S  -A vt tyAr ,
z= (vf + -- exp me2 rt; 0 zq S V
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and the force in this phase acting during the interval t3 is

" 2f) exp [- w qArs]  0 < t < t3
F~A (Ty + VfA t<t<(

3  = q ( y Ars . e2 S ' 3

The period required for the plug to leave the target is (hI - Zf )/vf

with vf as the final plug velocity at t 3 , and the total time for

ending the plug ejection from the instant of contact is

tf = t + t + t + (h1 - z*)/vf (.)

This wvill be follo-wed by the ejection of fragents rep on..t. the

effective mass added to the projectile in phase 1, and then by the pro-

joctile itself.

tr[.resentative results using this procedure are presented in Fig .. 21,

with values taken from both ballistic tests and direct measure(.ment, with

rS and D., i 1, 2, 3 ieasured.(5u) The value of D2  corresnond,:d

clusely to the avtia()e of D and D(. Tests have also indicated that the

ratio D2 /h and hI/h 0  for a given striker-target combination appear to b,

nearly ((,in' tat ovfr the range of velocities examined.

A different aiproach :if the plugging process during the normal impact

of blunt projectiles also considers the simultaneous action of compression

and shear under corditions of lateral constraint and divides the phenoimnon

into two phases:(52) (a) Concurrent compression of the plug to its ter-

minal thickness, shear that rmves an equivalent syr-.metrically defurnAd

plug section to the distal edge of the plate, and an acceleration of the
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plug so that its velocity is equal to that of the blunt-nosed projectile,

all occurring at a constant force level, and (b) Plug shear and compression

until complete ejection occurs with a com, on projectile and slug velocity,

at constant compressive force level, but with a linearly diminishing shear

force tc an equivalent level dictated by the assumed equivalent symmetrical

model during this stage. Elastic behavior is governed by Hooke's law with

the plastic domain characterized by a parabolic stress-strain relation

augmentpil hy a constraint factor to compensate for the confinement that pre-

vents side flow. The ejection velocity can be evaluated by an energy balance

involving the work of compression, shear, and friction during these two

stages. The model appears to be somewhat artificial and also depends on

both empirically determined plug dimensions and confinement parameters

as well as an assumed material behavior pattern.

A still different representation portrays the failure of targets struck

normally by sharp-nosed projectiles as an adiabatic shear plugging mode.
(53 )

This may occur when the work-hardening rate of a substance is less than the

rate of thermal softening due to heat generated as the result of plastic

flow; if it is confined to a narrow annulus, it will result in severe

strength reduction of the target. Two modes of failure are examined: a

ductile hole enlargement as previously described (30)(31)(33)(34) or a plug

shear, the actual process being specified as that requiring minimum energy.

Thus, two plate thicknesses are specified in terms of the basic projectile

radius; a "thick" target in which a combination of the two mechanisms takes

place, and a "thin" plate in which only shearing eventuates. This concept

is very appealing; unfortunately, the viork of hole enlargement, correctly

written in the form of Eq. (45) was overstated by a factor of four that
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renders suspect the model and, in particular, the correlation of the

predictions of the analysis based on a power-law of stress and plastic

strain with experimental data.

PROJECTILE DEFORM4ATION AND FRACTURE

As demonstrated in Figs. 17 and 18, another important phenomenon in the

perforation process requiring modelling is the deformation (and/or fracture)

of the projectile. Two general approaches have been developed to provide

some predictive capability with respect to changes in projectile shape:

(a) Use of plastic wave propagation analysis, occasionally in conjunction

with elastic transients, and (b) Hydrodynamic description of the behavior

of the striker, based on extensions of the Munroe jet effect. The first

technique can be used to predict failure of penetrator rods that occurs

when the local stress exceeds the ultimate strength, particularly in tension.

While some obvious successes have been scored with this type of investigation,

this aspect of the complete phenomenon is the least well-known and understood,

particularly with respect to initiation and propagation of fracture in the

projectile and its decomposition into a few sizeable or very large number

(5)
of small fragments. As also recommended elsewhere' , there is an urgent

need to delineate these failure phenomena under conditions of rapid loading,

based upon fundamental information in the domains of constitutive behavior,

material science and fracture mechanics.

The initial analysis of this deformation considered only rormal impact

against ideally rigid targets and was developed primarily to deduce the

dynamic yield strength of the striker fromi its observed distortion~l)l)

based on plastic-rigid or plastic-work-hardeninig behavior. The approach

has been extended to incorporate the normal impact of blunt-nosed cylinders

aantnon-rigid targets of finite thickness at velocity v0() Here, the
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striker is assumed to exhibit a hilinear stress-strain curve wor'on~ling

to a plastic wave velocity c = /(-/pdo/dr_ in that regime. A fixedP

reference frame is used to measure all absolute speeds and the t,,v,.!t is at

rest prior to impact.

The essential mechanism of deformation is illustrated in Fig. "), to-

gether with the nomenclature. Impact of the striker on targets of .. mi-

infinite or fi,;ite depth produces a local interface velocity, v, hogether

wl tn tvo plane wavs travell ing in the cylindrical striker towards he free

surface: an el st i c compres si on .,ave with speed c0  a Ind a slow,r p1 Lasti .

propagating wjith ;peed c that produces sidewise perio,-onnt defuiit ion of
p

the frontal region of the projectile. The stress just forward of i1e plastic

wave is the yield stress oy I the ampl itude of the elastic .ve,Ji

initial transit reduces the particle velocity in the veav,,,rd pul, ir)n o I the

striker from v0 to v0 - Av, where Av = (y/bco. After the firt tflct io

from the free distal surface of the cylinder, the wave cancels stroes y

while again reducing the particle velocity by another increment .v. Upon

interaction with the advancing plastic wave front, the process is ,,peatod,

rc.sulting in the pattern indicated in the diagram and an instantanewi's

velocity v at time t for that section of the elastic re;mainder located

between the elastic and plastic wave fronts.

Two specific target models are exahiined here (4) (a) A de;forii.,hle

half-space as shown in Fig. 29 in which wave dispersion is ignortd aind a

constant value of v I as iete:iined from momentum considerations is stipu-

lated, and (b) A rigid plug removed from a plate of thickness hI as

shown in Fig. 30, where vI varies according to Newton's law for the plug ,al

the latter is considered to he that sheared by a cylind(r with a rot in;s

25 percent larger than bullet radius Rb, in accordance with exlitital
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evidence ( 5 4 ) . When model (b) predicts a greater deformation than (a),

it is replaced by (a).

In considering the case when vL = v - V < c p, where Fig. 29 applies,

the striker mass mb remains constant, plastic deformation occurs only

within the increment

dz = (cp - [v - v1]) dt = (cp - vL) dt (I )

during time dt and conservation of mass for the incompressible cylinder

iequires that

A0  - I

Hr re, A and A denote the areas on the plastic and elastic sides of the

plastic wave front, respectively. If L represents the length of the

elastic portion of the cylinder, of mass mE = PbA0LE , then the force

acting on wE is

F . .. ayAo = mE(dv/dt) (80)

Eq. (80) pcriits the evaluation of the instantaneous relative velocity vL

as

v + (a /0 ) ;,n (l - ) V, (81)
L  Vo Y b P L

For the half-space model (a), a momentun balance at the interface yields

the value of vI as
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v= Vo where cH (K/p) (.2)l-+UPCtt/p bCT

here cH is the bulk velocity, p the density, and K the bulk modulus

of the target. For model (b) with negligible impulse transferred to the

target, found to be an excellent approxim; ation when the initial velocity %,-s

at least 25 percent greater than the ballistic limit, a momentum balance

yields

mb o0 = mEv + (mb0 - mE + mq)V I  or vI = (mbo V - m Ev)/(nlbo - - in ) (8)3)

with plug mass mq = -P(l .25 Rb) 2 h The length of the terminal undefoid,

portion of the cylinder for the two cases is given by

(a) LE = L0 exp (-voPbcP/7,Y) and ("4)

(b) LE = L exp [(-voPbcp/ay) {nq /(mq + n.)}M (85)

where the impedance factor Z = 1 + (Pbcp/PCH). Integration of Eq. (78)

yields z = f(t), and Eq. (79) can then be combined with this result to

provide an implicit relation for t = t(A/A ) which, in turn permits

relation of A/A to z. This yields for the two cases

vo  Ao 1 AI o

(a) ( -0- (ri + A ) exp { 1 - A 1)
1 0 CPA~ A c P

where n* = GY/Pb Cp(
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c t ct 1- ct/L c t
(b) LZ __. - + R!-- [(1 -P- )  n + o- +  t

LL 1 .54 L

l*c t m V Y ct /q- Zn +--- a- n (1 + -P- q'
0.96 -mbo p L (81)

where 5 1 + (mq/m bo) and where an approximation in the integration for

case (b) has been employed, [ln /(l - C)] - {(In C)/l.54) - 0.96 which

is satisfatory for Z > 0.1; otherwise, the cylinder is nearly disinteg-

rated. Furthermiore,

[m_ t]/m ct vo
A/A - - + tP- - + -P - L*Pn(l _ q- 11 (88)

and a combination of Eqs. (87) and (88) permits expression of z = z(A/Ao )

at specified values of tine.

When the value of vL E v - vI > Cp, the plastic wave cannot travel

away from the interface, and a standing shock wave is produced at some

distance from the interface which erodes the material passing through this

section by disintegration, ablation, melting, or flashing. (4)(24) When

the velocity vL  has dropped sufficiently so that vL < Cp, the

previous analysis applies. Thus, the problem can be solved in two steps:

An erosion nodel is utilized for the case when vL > C that determines

the residual length L,, mass mb = (Ll/Lo)mbo and velocity vI = Zcp

when v has been reduced to c These quantities serve as the initial

conditions for the analysis described by Eqs. (78) - (88) for the evalua-

tion of the terr.inal projectile shape, as shown in Fig. 30. During
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subsequent plate perforation, the laterally expanded segment of the

striker may be sheaied off, and this will be also evaluated.

For the half-space, neglecting the distance between the shock wave

and the impact surface and utilizing the equation of motion for the re-

maining portion of the cylinder m = p A0L E with dLE = - vL dt and

integrating between the initial value vL = vo/Z and the final value c

for corresponding cylinder lengths L0 and Lf yields

Lf Lo  exp {[ -(p/2y)] [(vo/Z) 2 cp 2 ]} with mb f (f/LO)mb (
1f o b0 9

The plug sheared from the plate is accelerated during erosion; the impulse

transmitted to the plate is ignored, and it is further assuried that all

eroded material has a velocity component in direction z equal to the

instantaneous plug velocity vq. Thus a momentum balance gives

G .yA 0 dt + (v -vq)(- dm) = mqdvq (90)

while

V - Vq = - (dm/dt)/pA0  
9)

If in the resulting equation for r.i(t), the ratio m q/m is neglected,

corresponding to the case of a thin plate, the solution where I= b

i. e., when v - vq = c is

b- b31 o
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where the new length after erosion Lfl is

Lf = (mq/mb )Lo  (93)

In thin plate perforation, a ring of material is frequently separated

from the deformed cylinder as indicated in Fig. 30. Test results show that

the final deformed projectile diameter is 25 percent greater than the

initial value, corresponding to an area ratio A/Ao  1.56. The time tf

corresponding to this deformation is computed, and the corresponding length

zf(tf) can then be determined. The residual mass of the cylinder after

losses due to erosion and/or shear is given by

mg = pA0 (Lg - Cptf + 1.56zf) 94)

where L is the remaining cylinder length when erosion has just stopped.

The predictions of this analysis were in good agreement with test results

on 0.22 caliber steel projectiles fired at steel plates at speeds up to

3850 ft/s.

The other popular treatment of projectile deformation Lonsists of a hydro-

dynamic description of the penetration of long rods into thick targets, re-

presenting the essential elements of shaped charge action. The model,

shown in Fig. 31, involves the motion with velocity v(z) of a jet of density

pj and length L. which penetrates a target of density p to a distance

P(z) at the rate U(t). If E denotes the initial z coordinate of

the element arriving at the stagnation point PZ at time t, and if
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v.( ) is assumed to be constant prior to impact, the element displace-

ment at time t is

tv(O) = U(t) + PMt (95)

Under steady-state conditions, the event is governed by a modified form of

the Bernoulli equation that accounts for the dynamic yield strength of

striker a and target ay
3

y.+ j (vj - U) 2 = :pU2 + ay (96)
3

Neglect of these strengths permits an integral expression for P(t) in the

forM (55)

PJ/P Pj/P [-i'l

P L[ (= L- l)/(vR) v d- 1] + S

0 - ) (97)

where vF and vR are the velocities of the front and rear of tile jet,

respectively, and S is the standoff distance. If the jet velocity is

p (2 2 (l

3 P[ pjv i Pv .

- / oj(9I

The change in behavior of a projectile from an undeformable rod to the

jet inversion shown in Fig. 31 occurs in some critical velocity range V
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experimentally found to lie between 3200 and 6500 ft/s(56). Contrary

to the assumption for shaped-charge effect that leads to Eq. (96), for

an initial velocity v0 just above VQ, the crater bottom does not

move supersonically either with respect to striker or target, and hence

there exists a second critical speed vQ above which such supersonic

comportment occurs. This velocity is derivable from Eq. (96) by replac-

ing vj - U with the sound velocity of the striker, and is equal to twice

this velocity for identical projectile and target materials. Between the

two limits, the rod inverts as shown, but an additional force is trans-

ferred to the rod that affects penetration velocity U.

In addition to the penetration given by Eqs. (97) or (98) (the latter

frequently being used with the strength neglected), that occurs in the

relatively short interval

t (L /v)(l +/§i (99)

there exist two other stages in such a hypervelocity impact: (a) a

secondary penetration or cavitation when the projectile has been totally

deformed, but the shock wave and cavity continue to expand, and (b) a

recovery stage when contraction of the cavity due to elastic-plastic or

brittle restitution occurs, sometimes ending in brittle failure. The

secondary penetration has been approximated by half the crater diameter,

in reasonable agreement with experimental results on steels and aluminum

in the velocity range from 6500 to 22,000 ft/s.

The behavior of a rod travelling with initial speed vo and charac-

terized by incompressible hydrodynamic material behavior with initial
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and instantaneous lengths of L and L(t), respectively, miy be derivrd y ,

use of Eq. (96) and an equation of motion for the striking projectile

by a braking force at the base of the crater, given by
( 57 )

PbL(t) dvb - where dL(t)/dt = - (vb - U) = (dz/dt) - V) (ii

dt Yb

The value of U is obtained here by assuming the strength differcnce

y - C to be small compared to the dynamic loads, yielding
Yb

U = (dz/dt) B IV b B2(vo2/Vb) where B1: (1 H F/ ) I

0 b

B2  ( - .. ... . ( 1 ,'

With the definitions

B3 - x 7 Vb/V °  < I and f(X ) exp L --2B (2 (1.)

it follows tha.t

L(t) = LO )B21 3 f(x) and t =(L 0/v o3 2 3 f(\) d\ (lo3'

x

and z (L0/83) (X)82/B3 (BIX - B2/X) f(X) dX (toi)
X

The crater radius Rc  is determined from a balance of the deformation cenrqy

of the target and the energy lost by the projectile and is given by
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(x2 _ 2B3)[(l _ BI)X 2 + B2 ]

R =R _ where B4  ?E/pbVo (vTh)b 4(BC 1X 2  B2 ) _

and E is the work required to displace unit volume of the material. The

validity of the relations diminishes as vo 0 VQ since, under these cir-

cumstances, the shock moves slowly toward the rear of the cylinder, and

the braking force cannot be treated as continuous, as indicated by Eq. (100).

It is interesting to observe that the perforation of a target by a projectile

initially travelling at a velocity v0 < VQ occurs with a significant drop

in velocity, but no decrease in mass. On the other hand, for a shaped

charge exhibiting a velocity vj = vo > v,', penetration takes place

without a velocity drop, but with a substantial decrease in mass; in between

these extremes, a slender rod with a velocity vC < vo < vQ' loses both mass

and speed. Similar penetration analyses have also been reported in

Refs. (58) and (59).

Investigations of initiation of failure in the projectile have thus far

been limited to the same phenomenological basis as for the target, involving

fracture into components when the local stress in tension, shear or compres-

sion exceeds the respective ultimate strength. The stress state in the

striker is generally considered to be uniaxial which may represent a degree

of realisri for long rod kinetic energy penetrators, but is probably not

applicable for projectiles with small aspect ratios where stress states are

distinctly multi-dimensional. Furthermore, these simplistic failure

criteria are known to be inapplicable to short-duration, high-amplitude

loading where the fracture phenomena depend very definitely on time1

and probably also significantly on temperature(5) . Spalling of the
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material results from the tension generated by rarefaction waves created

by the impact phenomenon, whereas shear or bending failures occur due to

antisyrmetric loading.

The fracture process has been analyzed from three distinct viewpoints:

(a) Methods of continuum mechanics based on an instantaneous or cumulative

damage criterion, (b) Crack nucleation at the microscopic level, and

(c) Crack propagation descriptions based on both continuum and fracture

mechanics precepts. The author is also currently engaged in the construc-

tion of a model for the combined tensile, shear and crushing failure of

polycrystalline masses bonded by cementitious substances, such as repre-

sented by most natural rocks, under projectile impact. However, knowledge

in all these areas, as well in suitable constitutive descriptions of toth

projectiles and targets under high and rapidly applied loads below the failure

level need still to be substantially expanded to permit better predictions

of the phenomena of impact and perforation of targets by projectiles.

RECOMMENDATIONS AND CLOSURE

Suggestions for needed investigative activities in the area of projectile

penetration into targets have recently been given in both Refs. (l) and (5);

these include the development of rmore rational bases of specifying modeling

parameters, improved description of interface phenomena and analytical

modeling of force contributions, more emphasis on the effects of obliquity

and flight orientation of the projectile, better constitutive representa-

tions, including thermo-mechanical coupling and heat dissipation as well

as delineation of failure criteria.' In addition, inmprovements in computer

codes and better utilization of their capability have been outlined in a
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variety of areas. in closing the present paper, however, the writer would

like to specify his concept of an imnediate area of improvement in cur-

rently available phenomenological models based on relatively simple mathe-

matical representations that will combine a number of the developments

surveyed here. These problems will be attacked by the author and his

associates in the near future.

The first and most obvious step is a combination of the three stage

compression-shear-plugging model with the flexure of the target. This

can be acconplished by using an axisymmetric shear loading of the plate at

the periphery of the penetrating cylinder based on a perfectly-plastic or

work-hardening material behavior concept, and referring the motion of the

cylinder to a moving coordinate system embedded in the plate at the crater

edge. A second effort would be an attempt to eliminate the current empiri-

cal (or assumed) entrance and exit diameters of the crater by analyzing the

cylinder deformation on the basis of the solid continuum, described pre-

viously, or some combination of this with hydrodynamic concepts that will

permit prediction both of projectile deformation and hole geometry in con-

junction with the other phenomenological modelling steps. There appedrs to

be a distinct need to characterize the limiting states of material strength

as a function of the amount and rapidity of prior plastic work performed so

that the adiabatic shear phenomenon can be better characterized.

A parallel investigation should be conducted into the geometrical and

field variables that control hole formation in thin plates due to.sharp-

pointed strikers and the formation and propagation of cracks generating

petals. Here, also, thermo-rnechanical relations are undoubtedly required

-338-

W l .7



to specify material behavior. This is but one aspect of crack propagation

in targets that needs substantial further study.

The subject of penetration and perforation of targets by projectiles is

one of the m-ost complicated phenomena in the field of mechanics and there

is little danger that a sufficiently high level of understanding in all its

aspects will be attained in the next few decades to relegate the field to

investigative oblivion. However, the past history of the subject covering

more than two centuries has' not been marked by major breakthroughs (with

the probable exception of the development of numerical codes), as has

happened in certain areas of physics, but rather has been characterized by

the slow, steady accumulation of knowledge provided by a host of investigators,

and this is also the prospect for the future. Furthermore, the vast plurality

of the contributions have been initiated by government-sponsored activities

in the weapons area. The topic has numerous industrial uses and much

potential for further development in this domain. It would be highly desir-

able for further progress in this area to seek new and profitable applications

of perforation processes in non-military technological areas which would

attract a much larger fraction of the scientific comrmunity to work on the

challenging unsolved problems in this field.
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LIST OF SYMBOLS

A Area

B%,C Constants

BH Brinell Hardness Number

E* Specific Energy

E Work to displace Unit Volume

F Force

G Shear Modulus

H Crater Height

K Bulk Modulus

L Length

M Bending Moment per Unit Length

N Membrane Force per Unit Length

P Penetration

Q Shear Force per Unit Length

R Radius, Radius of Curvature

S Standoff Distance

T Time

T* Viscoplastic Relaxation Time

U Penetration Rate

W Work

Z Impedance

b Plug Thickness

c Wave Speed

co 0 Rod Wave Velocity

h Plate Thickness

m Mass

n Scale Factor
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p Pressure

r Radius, Radial Coordinate

s Transform Parameter

t Time

u Displacement in Plane of Plate

v Velocity

w Transverse Plate Displacement

z Coordinate normal to Plate, Position

z* Distance from Crater Tip

01 Stretch Parameter

a Half-Cone Angle

y Shear Strain

E Normal Strain

C Variable

0 Polar Coordinate, Angle of Obliquity

0* Angular Change in Travel Direction

K Curvature

x Lam6 Constant

v Dynamic Viscosity

p Density

o Normal Stress

T Shear Stress

A Difference

0 Slope of Projectile Nose

Subscripts

C Compression

D Dilatation

F Front
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H Hydrodynamic

I Interface

L Relative

N Nose

Q Critical

R Rear

S Shear

U Ultimate

Y Yield

Z Stagnation

b Projectile

c Crater

e Effective

f Final

g Remaining after Erosion

i Initial Combined

j Jet

0 Initial

q Plug

r In r Direction

u Projected

w Perfectly Plastic

50 Ballistic Limit

e Inle Direction

T Contact
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Superscripts

D Dynamic

E Elastic

P Plastic

S Static

A dot over a symbol denotes its derivative with respect to time

A prime after a symbol denotes its derivative with respect to the argument
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TABLE 1. Perforation Data for Aluminum Plates

PROJECTILE VELOCITY 4 MOMENTUM PLUG CAP MEASUREMENTS
RUN PLATE ft/s PROJECTILE CHANGE. NO. OF MAR DIANETERIh a
NO. SIZE INITIAL FINAL TYPE Amy, lb-s PETALS g in. in. in.

I a 371 163 c 0.0435 t

2 a 381 200 c 0.0379

3 b 259 113 d 0.1176

4 b 261 106 d 0.125

5 b 379 163 c 0.045

6 b 497 315 e 0.1044 - 0.135 0.326 0.0413 0.093

7 b 682 587 e 0.0545 - 0.187 0.378 0.0425 0.110

8 b 933 864 e 0.0396 - 0.269 0.425 0.042710.145

9 b 1289 1016 f 0.0197

10 b 301 195 d 0.0847 6

11 b 391 302 d 0.0711 4

12 b 497 445 d 0.0416 4

13 b 570 521 d 0.0392 4

14 b 840 803 d 0.0296 4

Is b 861 806 c J 0.0115 4

Plates: (a) 4 ft x 4 ft x 0.050 in. freely suspended
(b) 14.5 In. diameter x 0.050 in. thick clamped on a 14 in. diameter

Projectiles: (c) 600 cylindro-cgnical, 1/4 in. diameter, 5/8 in. long,
m - 1.74 x 10-  lb-s /in

Nerd (d) 600 cylindro-conical, 1/2 in. diameter, 3/4 in. long,
m 6.66 x 10-5 lb-s2 /in

Steel .e) 1/2 in. diameter sphere, m - 4.78 x 10- 5 lb-s 2/in
f) 1/4 in. diameter sphere, m - 0.60 x 10- 5 lb-s

2/ln
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Fig. 4 Perforation of a 0.050-in. thick Aluminum Plate Clamped at a Radius of
7 in. by a )-in. Dia. Steel Sphere. Initial velocity: 494 ft/s. Final
velocity: 315 ft/s. Framing rate: 168,000/s

V .4

t-.0. Ompcl 67 $s 222 ps 342ps.port 486 ps

Fig. 5 Perforation of a 0.050-in. thick Aluminum Plate Clamped at a Radius of
7 in. by a 4-in. Dia. Cylindro-conical Steel Projectile with a Half-
cone Angle of 300. Initial velocity: 300 ft/s. Final velocity: 195
ft/s. Framing rate: 110,000/s
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_A,

Fig. 11 Sections of -in. thick Steel Plates Struck by a I-in. Dia.
Hard-Steel Sphere at a Velocity of about 2900 ft7s.
(a) SAE 1020 steel plate (b) SAE 4130 steel plate

3 5 7



Fig. 12 Impact and Exit Side Photographs and Sections of Targets
Perforated by a ,-in. Dia. Hard-Steel Sphere at a Velocity

* of about 2800 ft/s. (a) 0.062-in. thick SAE steel plate
(b) ,-in, thick 2024-T4 aluminum plate
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Fig. 13. Impact and Exit Side Photographs and Sections of 0.25-i,
thick Targets Perforated by a h-in. Dia. Hard-Steel Sj'i.
striking at a Velocity of about 8600 ft/s. (a) 2024-Ti!
aluminum plate (b) SAE 4130 steel plate
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Plates by Projectile Perforation as a Function of Impact
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Fig. 16 Target Deformation due .to Normal Impact of a Blunt-nosed
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striker distortion (Ref. 4)
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Fig. 23 Plastic Plate Deformation Model due to Non-perforating

Normal Impact of a Flat-nosed Projectile&J6- h.

Rb I

I "-- I

Fig. 24 Assumed Antisymmetric Deformation Pattern for the Perfo-
ration of a Thin Target by a Projectile Striking at Nor-
mal Incidence Modelled as a Ductile Hole Enlargement
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Fig. 25 Petalling Model for Thin Plates due to Normal Impact of
Sharp-nosed Projectiles
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Fig. 26 Assumed Petalling Deformation Pattern for a Conical-nosed Striker
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:'BI*uPAGATING VELOCITY OF SINGUI.ARITY OCCURRINC IN

CERTAIN DEGENERATE PARABOLIC EQUATIONS

Yoshisuke Nakano

U.S. Army Cold Regions Research and
Engineering Laboratory, Hanover, N.H. 03755

ABSTRACT. It has been shown that the Cauchy problems for certain deLnerate

parabolic equations describing flow through porous media may not have classical

solutions and that the singularities occurring in the solutions may be inter-

preted as propagating acceleration waves. The propagating velocity of such

singularities is studied base upon the theory of acceleration waves and the

validity of such a viewpoint is examined for explicit solutions to the Cauchy

problems.

1. INTRODUCTION. Consider the Cauchy problem

3e = a (mm-1 3e in S = R 1  X (0 )
t x x

with the initial condition

e(x, 0) - a (x) in R (1a)o

where R denotes the one dimensional Euclidean space and m > 1 is a constant.

0 is a given bounded continuous non-negative function that satisfies the condition

e > 0 on I, otherwise . 0 (ib)

where I = (al, a2) is a bounded open interval in R

Eq. 1 describes infiltration of water into a dry porous medium where 6 is

the volumetric water content and mass flux of water q is given as

q - pev - -- O0m/ax (2)

where v is the velocity of water relative to the solid phase and p is the density

of water. An interface between a wet part and a dry part of the medium is called

a wetting front.
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Eq. 1 is a nonlinear equation which is parabolic for 6 > 0, but which degen-

erates when 6 =0. Oleinik et al. [19581 have defined a class of weak solutions

to problem (1), and have proved the existence and uniqueness of solutions in that

class. They have shown that if e6 has compact support then e also has compact

support in R for each t > 0. This implies that the wetting fronts propagate

with a finite speed. Moreover, in the neighborhood of any point of S where 6

is positive, e satisfies Eq. 1 in the classical sense. In general, the transition

from a region where 6 > 0 to one where 6 =0 is not smooth and it is therefore

necessary to use the term "weak solution"

The purpose of the present paper is to present the conditions that determine

the velocity of wetting fronts and serve also as the moving boundary conditions

at the wetting fronts based upon the theory of singular surfaces and acceleration

waves [Truesdell and Toupin, 1)63].

II. ACCELERATION WAVES. We assume that the flow is in one direction only.

We examine the condition in the neighborhood of a wetting front that divides the

whole region V into a part Vwhere water is present and a part V where water

is absent. Let x = 4(t) be the location of the wetting front. Then the condition

of mass balance at the wetting front is given as

where u 0 0 is the propagating velocity of the wetting front and a double bracket

is defined as

OAl = A'- A- (4a)

A = lim A, x in V (4b)

A- -lim A, x in V (4c)

Since v -0 Eq. 3 reduces to

P+9+ (V+ -U) on xi () (5)
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It follows from Eq. 5 that we have either

4 = 0 (6a)

or
+
v =u (6b)

In terms of flux q, Eq. 5 may be written as

q+ + + u (7)

From Eq. 7 it is clear that Eq. 6a is a necessary and sufficient condition for
+
q = 0 as long as u remains finite, which is the case in physical problem.s. On+ + +
the other hand, Eq. 6b does not necessarily imply that q # 0 unless c) + 0.p+++

Thus we have two possible cases: Case 1, p6 = 0, then q = 0. Case 2
+- + + +

p 0 0, then u = v , and q 1 0.

In Case 2 p&, v and q are all discontinuous at x = (t), and the wetting

front can be interpreted as a shock wave. Since reported experimental data have

not confirmed the actual occurrence of such shock waves, we exclude this case from

our discussion and concentrate on Case 1.

There are several ways to define acceleration. However we prefer to define

it in terms of q for the sake of convenience. In the case where q is continuous,

but qx is not at the wetting front, then u is given as

qtVU=- lim ( --), x in V8)

Eq. 8 also serves a moving boundary condition at the wetting front in this case

and was obtained by Nakano (1978, 19791. qt stands for acceleration in terms of

flux q and the wetting front can be interpreted as a propagating acceleration wave

of the first order.

As it will be shown later, Eq. 8 does not apply to all the cases studied

here since singularities of yet higher order occur. In general, the propagating

velocity of accleration waves of the nth order is given as [Truesdell and Toupin,

1963]

Qnu im t +9
Uf i - , x in V+ (9)

Q x

-375-

7°



where Qn is defined in V+ as

Q n q(9a)

or
QI=q
Q2 =q

2
Q qx
3 q =q etc.

It should be mentioned that Eq. 9 is not the only way to determine the propa-

gating velocity. In the situation which we are considering here, u might be
+

equal to v Also since O is continuous, if (rO)x is not continuous, then u
can be determined by

u = lim x in+ (10)
xu im (P 0) '

Although Eq. 9 is not a unique way to determine u, Eq. 9 should be able to

determine u for all possible cases. We will show that this is the case in

the following section.

III. VELOCITY OF WETTING FRONTS IN PARTICULAR SOLUTIONS. We examine Eq. 9

by applying it to two kinds of explicit solutions of Eq. 1 that were originally

derived by Barenblatt [1952, 1953].

Solution I

Eq. (1) has a particular solution:

1

(At -x +B)) M-1, 0O< x<;kt+ B
(x, t) (11)

0 x-> At + B

where t > t > 0, A is a positive constant and B a real number. The location of
0

the wetting front is given as

x - &(t) At + B (Ila)
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It follows from Eq. Ila that the wetting front travels with a constant velocity ;,.

We examine the regularity properties of Eq. 11. From Eq. 11 we obtain in V
+

q = pX (12a)

6= X2 62-m (12b)
m

= C 3 62-m (12c)
m
2= 2_- X3 03 - 2 m  (12d)

qx,x 2P

- (2-m) 4 
63-2rn(1eqx't M 2 (2e

q (2-m)(3-2n) X4 64-3 (12f)
qx'x'x - 3

m

etc.

If m > 2, although q is continuous, but q is discontinous at the wetting front.

Thus the wetting front is an acceleration wave of the first order. The velocity

u is determined by Eq. 9 as

Qt qt
U=- lim -- =-lim - = A (13)

I q

3

If 2 > m > , although q and q are continuous, but q is discontinuous at

the wetting front. Therefore the wetting front is an acceleration wave of the

second order. The velocity u is determined by Eq. 9 as

2
t xtU lim t lim (14)X-i 2 X-q xx

x

Generally if n > m > -- where n is an integer, the wetting front is an accel-
n- = n

eration wave of the nth order and the velocity u is determined by Eq. 9.

Solution 2

Eq. 1 has a particular solution:
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m+ 2 2 m-I 0O< n
O - -

6(x, t) = (15)
0 n no

whre t > to,

n = X/l/(+l) (15a)

I

= ( +1) (15b)

and

1 m-1
no=1(2m(m + 1)) ra-I r1!+' r {Fmm) F( 1}-] m+1 1c

o = j2( m- 1 r(+- 1 - (15c)

where F is the gamma function defined as

0o

F(r) = tr- le-t dt r > 0 (15d)
0

We examine the regularity properties of Eq. 15. From Eq. 15 we obtain in V
+

q = a m p t-1 x 6 (16a)

qx= a m p t ( - at- x2  (16b)

-a m x_ 2x [at - I x 2 e 2 - m - (m+2)01 (16c)qt= m+1

etc.

where a - 2 M-1/(m-1)

If m > 2, although q is continuous, but q is discontinuous at the wetting

front. Therefore the wetting front is an acceleration wave of the first order.

The velocity u is determined by Eq. 9 as

I

nOno- QX
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I n+1
, ~n ri., ,1, !I( wc tu -. I .,.,': q i , t w t i g f ront i J

:r ,lormt i .n ot th e ith ordu.r ,.,.d t hc VCIo, i tv u i . determined y f.

iV. CONC L')[N I' RS N G' R: u Ir- "KS .nt, ud th rondit ions that 1r>-

thu propagatuing ve loci tv of a etiL i ng front and thlat sturve also 3a: t .,i

boundary condit ions at the wetting front e havce shown that suchommA i.n

hold tru, for r. ,portud ,;;irticul-ir sonlution, in the 1iterature.

W'e hive; : t: : t hc - frUnt ia- generally ai. ,wceltrac : .-

t.', nth ordr .;1vrC p. i-; an interger. Since unfortuna telv thu.-e - :

:r :rI and 7.a 2v mu thud to dot, rmine tl: u order of these aeceli -atio, 7-aoaesC5 , -

oat knowine the L:xact form of solutions, the dei inite determination o' tiif r

has to rely upon 6trictlv mathematical analysis case by case. It is possible

that a physical law which might determine the order will be found in the future.

F:rther research is needed to understand the true nature of wetting fronts.
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.'70JC 1O ' -TW RFACF CO DT PO:I S*

P-J,::-ird A. Fleishman
Re.'sselaer Polytechnic institute

T-ov, New York' 12181

s thenster n UIn i -ir
p:-.c :-o , T]]i:.)is D( '4]

A.F'PACT. Let D 11 a hou-ded i:.P w. -. sccc,*h h ... rv.

Let B1 .... ,B be ,.on-intersecting sc-'nr' L 7 .... ian lrv-- s co.tainc , in

D, and let D' denote the complement of B B. with resrect to D.2

Succose that u c C (D') nC(D) and gu < 0 in D' (where A is the

Laplacian), while across each "interface" Bi, i = 1,... m, there is

'continuity of flux" (as suggested by the theory of heat conduction).

It is proved here that the presence of the interfaces does not alter

the conclusions of the classical minimum principle ( for Au < 0 in

D). The result is extended in several regards. Also it is applied

to an elliptic free boundary problem and to the proof of uniqueness

for steady-state heat conduction in a composite medium. Finally this

minimum principle (which assumes "continuity of flux") is compared

with one due to Collatz and Werner which employs an alternative

interface condition.

1. INTRODUCTION. To prove a minimum principle in a domain

with interfaces (or internal boundaries) we shall make repeated use

of the classical result. Let us therefore state the classical

minimum principle for functions satisfying Au < 0 (so-called super-

harmonic functions), where A is the Laplacian operator.

*Sponsored by U.S. Army Research Office under Contract No. DAAG29-79-
C-0012.
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CLASSICAL MINIMUM PRINCIPLE (CMP). Suppose D is a bounded

Rn wtsmoh(oexpl, 2
domain in R, ihsot freape ) boundary B. If

u F_ C 2 (D) n'\C(5) and Au < 0 in D, then min u (which we denote by p~)
D

is assumed on the boundary B; it is assumed in D only if u in D).

Furthermore, when u jat a point of B where u =pthe exterior

normal derivative of u, u V , is negative, where vdenotes the

outward-directed unit normal.

of course u has a minimum value, pi, in 5 because u is

continuous in D.

Recently, in the course of investigating some free boundary

problems for nonlinear elliptic equations, we found that we

needed a minimum principle when D contains internal boundaries

on which Au is not defined, but across which certain interface

conditions hold. We prove such a minimum principle here.

Results of this type have appeared in the literature.

Oleinik 16] discusses a maximum principle for elliptic problems

with interfaces, but requires the equation to contain a non-

homogeneous term. Our result below does not have such a require-

ment. Littman [31 develops a generalized maximum principle for

smooth equations which have adjoints. Problems with interfaces do

not appear to be covered by this result. Rubinstein [8] studies

existence and uniqueness of solutions to free boundary problems

for the Laplace equation; the interface conditions, however, differ

from those we use below in that he specifies the values of the

dependent variable on the interfaces.

our minimum principle is formulated and proved in Section 2.

Some extensions are described in Section 3, and in Sections 4 and 5
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we present two applications. The first deals with the uniqueness

of a steady-state temperature distribution in a composite medium,

the second with a simple diffusion-reaction equation containing

a discontinuous reaction term. Finally, in Section 6 we compare

our interface condition ("continuity of flux") on normal

derivatives with an alternative condition used by Collatz [1] and

Meyn and Werner [4].

2. A MINIMUM PRINCIPLE. For ease of expasition the result is

formulated and proved for n = 2; the minor modification required

for n > 2 is described in the next section.

Let BI...,Bm+l be non-intersecting smooth Jordan curves in R
2

such that for i = 1,...,m,

Bi C int Bm+1 = D.

B1 ,...,B m are the interfaces. Note that now D is a simply-

connected domain.
m m

The complement of .B. with respect to D, D' = D/ 'Ji=1 l '1B

may also be written

m+1
D1 A.i=l 1

where Al,... Am+, are the disjoint subdomains into which

BI,..., Bm divide D, and Ai is the one immediately interior to Bi

(see Figure 1 for illustration).

In order to introduce a "continuity of flux" condition

(suggested by heat conduction) to hold across the interfaces

BI,...Bm, we definein Da positive-valued, piecewise-continuous

function k such that k = ki(x,y) (i = 1,..., m+l) is continuous
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in A. and may be extended continuously to A.. As in Section 1,1 1

at a point P of any B. (i=l...,m+l), let v denote the unit

normal directed out of Ai, and uV the corresponding normal

derivative of u at P. We now formulate the interface condition,

after which the minimum principle is stated and proved.

CONTINUITY-OF-FLUX (COF) CONDITION. At every point of

B. (i=l,...,m) ku is continuous across Bi.

MINIMUM PRINCIPLE. Suppose that u c C2(D ') ()C(D), that

Au < 0 in D', that in Ai (i=l,...,m+l) ux and uy may be extended

continuously up to the boundary, and that COF holds. Then (i)

= min u is assumed on Bm+l; (ii) P is assumed in D only if
5

u p in D; and (iii) in case u 1 11, at a point of Bm+l where

u =v we have u < 0.

In other words, when the interface conditions are continuity

of u and continuity of flux the presence of interfaces leaves

unchanged the conclusions of the classical minimum principle

PROOF. Either u p in S or not. In the first case, (i)

holds trivially. To show that (i) holds also in case u I p,

suppose (ii) is true; then u p v implies that u p ' in D, there-

fore u = p at a point of Bm+l Also to prove (iii) it is enough

to know that (ii) holds; for then, as indicated in the argument

below, u t p in D implies u I V in Am+I, while u V somewhere on

B m+. Then the classical minimum principle (CMP) applied to Am+,

yields result (iii).

Thus, to complete the proof it suffices to show that (ii)

is true. Suppose u = somewhere in D; this may occur at interface
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points, non-interface points, or both. If u = pj in some A.,

then from Au < 0 in A. and u c C(Ai), CMP implies that u E p in A.

and therefore on the boundary of A. which includes at least one

B B m+I . Thus, if u = p at a non-interface point in D then

u = at some interface point.

Suppose then that u = p at a point Q of some B. (i=l....m).

We show that in this case u E -p in both subdomains of D' bordering

Bi (A. immediately interior to B. and, say, A. immediately exterior11 1 J

to Bi).

Let (u and (if)V denote the limiting values of u (at Q

on Bi ) from the interiors of Ai and Aj, respectively. Since by

definition V is directed exterior to A. (therefore interior to A.)1 J

(u represents a normal derivative interior to A.. Now COF
(uu j

may be expressed in the form

k.(u ) k )j (i)

Also, applying CMP to u in Ai and Aj yields

(u) <0and -(u ) <0 (2)

respectively.

From the positivity of k i and kj, it follows from (1) that

(uV)i and (u ) have the same sign. This is consistent with (2),

however, only if

(u V ) = (u = 0. (3)

If now u J V in Ai , CMP implies (u) i < 0 at Q, contradicting (3).

Thus, u = V at a point Q of B. (i=l,...,m) implies u : p in

Ai and, similarly, u p p in A., the domain immediately exterior to

1385
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B. Now u = p also on the other boundaries of Ai and A., the

argument may be repeated (a finite number of times), and we

conclude that u H p in B. This completes the proof of part (ii)

and therefore the entire theorem.

3. EXTENSIONS. We give several extensions of the minimum

principle just proved.

1) As in the classical case, when the sense of the

inequality is changed from Au < 0 to Au > 0, the minimum

principle is replaced by a maximum principle.

2) To obtain a minimum principle in R n, n > 2 , the inter-

face curves Bit ..., IBm+l must be replaced by appropriate surfaces.

Specifically we want each B . to be a closed surface which

separates R ninto two disjoint domains, an (unbounded) exterior

and a (bounded) interior. Thus, if the B11 .. *I Bm+l are non-

intersecting "Jordan manifolds" which are C 2, and therefore possess

the interior-ball property (see [5]1, p. 7), we shall have the

minimum principle in Rn

3) As in the classical case minimum (or maximum) principles

for more general elliptic operators are obtainable in the

interface case.

EXAMPLE. Let the hypotheses of the minimum principle in

Section 2 be unaltered except that instead of Au < 0, we assume

Lu + fu < 0 in D'

where L is a uniformly elliptic operator of the form
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Lu -au + bu + cu + du + eu ,xx xy yy x y

a,b,c,d,e,f are functions continuous in each '. (i=l, ... m+l)1

and f < 0 in D.

The classical results for a function u satisfying Lu + fu < 0

in D under these conditions (e.g., see [7]) are that u can not

assume a negative minimum in D, and that u < 0 at a point of the

boundary where the minimum occurs, unless u = constant. (Since

f < 0, u = constant < 0 is no longer a possibility.) Because this

is the situation in each A i, an argument like that used in the

proof yields a similar result for D in the interface case.

4) Minimum and maximum principles are also obtainable for

parabolic inequalities in the presence of interfaces, for example,

by arguments like those used above for elliptic inequalities.

In fact much of the work on parabolic free boundary problems

makes use of maximum principles in one form or another. We shall

not pursue this here; for references to the extensive literature

on the subject the interested reader is referred to [8] and [9].

4. APPLICATION: UNIQUENESS RESULT FOR STEADY-STATE HEAT

CONDUCTION IN A COMPOSITE MEDIUM. Let D be a two-dimensional

region divided into sub-domains A i by curves Bi, as in Section 2.

Let fi(x,y) represent heat sources (or sinks) in Ai, and ki the

constant conductivity of region A. If u(x,y) denotes the
temperature at the point (x,y), then k . Au = fi(x,y) in D', and

u is specified on Bm+uI the outer boundary of D. The continuity

of flux interface condition will hold if there are no heat sources

or sinks distributed along the interior curves B. 11
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To derive a uniqueness result for such a linear Poisson

interface problem, we show that u E 0 on Bm+1 and Au = 0 in D'

imply u = 0 in D. Since Au = 0 in D', both Au < 0 and Au > 0

hold in D'. Combining the maximum and minimum principles, we

conclude that u attains its extreme values on Bm+I. As u = 0

on Bm+l, we have u = 0 in D, thus proving the uniqueness theorem.

Note that a similar proof shows that solutions to problems

of this type depend continuously on the boundary data specified

along B +i.

5. APPLICATION: SOLUTION BY ITERATION OF A SIMPLE DIFFUSION-

REACTION PROBLEM WITH DISCONTINUOUS REACTION TERM. Consider the

following boundary value problem in D = {O < r <1).

'Au + H (u-ii) = 0 in D/F

u(l,e) = ch(O) , 0 < 8 < 27r.

Here H denotes the Heaviside step function (= 0 for u < p, = 1

for u > v), p > 0 a given constant; F is the set of points in D

(not known a priori) where u = c > 0 is a parameter; and h is

a given function, continuous, periodic with period 27, and

satisfying 0 < h(O) < 1.

P(c) may be regarded as governing the steady states of a

simple reaction-diffusion system in which the reaction rate

changes abruptly when the state variable u reaches the triggering

value p.

Suppose e < p. Then if u > v somewhere in D, there will be

one or more interfaces in D across which H(u-P) changes discontinu-

ously; in this case P(c) is a (nonlinear) free boundary problem

(FBP), the solution of which requires also the determination of
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the interface(s) (defined by u = i). If u < v throuhout D,

H(u-p) - 0 and P(E) reduces to a linear Dirichlet problem for

Laplace's equation.

In [2] we have used an iterative method to establish the

existence of a solution to the FBP P(e), and we wish to indicate

here how the minimum principle proved in Section 2 may be applied

to show that the iterates form a monotone sequence.

Consider the "reduced problem" P(0), with boundary condition

u(l,6) H 0. If we restrict ourselves to symmetric solutions

u = u(r), P(0) takes the form

(ru')' + rH(u-1) = 0 , 0 < r < 1 , (4)

u' (0) = u() = 0 (5)

Suppose a C solution exists for which u(0) > P. From (4),

(ru')' < 0. But because (ru')' 7 0, u is strictly decreasing on

the interval (0,1), so that u(r ) = p has exactly one root r0 in

(0,1). By solving (ru')' = -r on (O,r ) and (ru')' = 0 on (r ,l)

subject to (5), then requiring u and u' to be continuous at

r = r0 (and also u(rO) = p), we find the following (see [2]).

If p < 1/4e, the BVP (4-5) has two C1 solutions of the form
r r 22r2 2

n r + o r 0 < r < r (6)2 0 4 4 ' - -- o

u (r)

_ 0 tn r r < r < 1 (7)
2 0 -

each corresponding to a root r = of
0

- C Ln = 4V (8)

For fixed p c (0, 1/4e), equation (8) has two distinct roots

-389--

cr. Vw-A-



2

in (0,1); to each of these roots r = 2 corresponds a solution

(6-7).

Let u. = U (r) denote the function (6-7) corresponding to
2

the larger root = 2 of (8). u0 is chosen as the first term

of an iterative sequence u0 , Ul, u2 ,..., in which un (r,e),

n = 1,2,... is defined as the (unique) solution of the linear

Poisson interface problem

fu + H(Un-l-P) 0 in D/rn- 1Pn

u(1,6) = Eh(e) , 0 < 6 < 2Tr

A solution u(r,O) of the FBP P(E) is then sought as the limit of

the sequence {u n1.

By I is meant the set of points in D at which u = ; thusn n

F0 is the circle r = ro. It is not obvious that FIF 2 .... are

simple closed curves; the proof of this fact is part of the

analysis in [2].

The minimum principle will be applied to the differences

(U n+l-U n), n = 0,1,.... We note first that there is a unique

C solution ul(r,O) of the BVP Pl: {Au+H(u 0-P) = 0 in D/ o ,

u(l,e) = Eh(8)). On the other hand, u (r) is the unique solution0

of the BVP {Au+H(uo-j) 0 in D/r o , u(l,0) = 0}. Therefore
00

A(Ul-U) = 0 in D/r°

ul(l,e) - U0 (l,0) = ch(8) > ca > 0, 0 < 0 < 27

where a = min h(8) > 0. It follows from our minimum principle

that

U- U > ca > 0 in D.
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Since u I < ij on r = 1 and u1 (r,) > u(r) > i- for 0 < r < ro,

only in the annulus r0 < r < 1 are there points where uI = 1.

In fact, these points may be shown to lie in a thinner annulus,

S : r0 < r < r < 1, where r : r = r is the free boundary in

the one-dimensional BVP
P {(ru')' + rH(u-p) = 0, 0 < r < 1; u(l,6) = .

C

In order to apply the minimum principle to the next difference,

u2 - Ul, we must know that the set = {(r,e): u1 (r,O) = p}

forms a smooth simple closed curve r = r1 (6) (which clearly

encircles ro: r = r0 ). This is established (see (2]) by a)

showing that in SC 3u1/ar < 0, thus, that along any ray e = 6c

(constant), there is exactly one value of r at which u1 (r,Oc) =1;

and then b) utilizing bounds on au1/ar and u1 /ae to allow

application of the implicit function theorem to prove the smooth

connectedness of the points of F. (An integral representation

of u is used to obtain bounds on these derivatives of u1 .)

Again, there is a unique C1 solution u2 (r,O) of the linear

Poisson interface problem P2 : {Au+H(u1 -i) = 0 in D/1 u(l,e) =

ch(8)}. It follows that

A(u 2 -u I ) = -[H(u 1 -j) - H(uo-)

< 0 ( K 0) in D/(F r 1 )

u 2 (i,8) - Ul(l,8) = 0 , 0 < e < 27

Note that A(u2-u1 ) 1 0 because in the annular domain bounded by
F° and FI , S {(r,8): r 0 < r < rl( )1 , u 0 < < u I , so that

H(ul-j) - H(uo-i) = 1.

Application of the minimum principle then gives
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u2 - u1 > 0 in D.

By arguments like the preceding, it may be shown that the points

where u2 = 0 form a smooth simple closed curve r 2: r = r2(0),

with r1 (e) < r2 (6) < rE.

Proceeding iteratively, we establish that there is a

sequence of C1 functions {un which is monotone and bounded:

u (r) < u1 (rO) < u2 (r,8) <... < u (r) in D, where u (r) is

the larger solution of P . Similarly, the interfaces F : r = r (0),c n n

n = 1,2,..., form a monotone and bounded sequence of smooth simple

closed curves:

r < r1 (0) < r <. .< r < 1 _0 < e < 27

Finally, the respective limits of these seouences, u(r,e) and

F: r = r(0), may be seen to have appropriate regularity and to

form a solution of the FBP P(c), as follows.

THEORFM. Suppose pE(0,1/4e). For c > 0 small enough, the

sequence {u n(r,6)} converges monotonically and uniformly to a

limit u(r,0), where u0 (r) < u(r,O) < u (r), and the sequence

1{r ()} to a (closed) limit curve F: r = r(O) £ C I , wheren

r< (O) < r C Then u(r,0) is a solution of the BVP P(E),

with free boundary F.

6. COMPARISON OF THE CONTINUITY OF FLUX WITH AN ALTERNATIVE

INTERFACE CONDITION. In order to prove the minimum principle in

Section 2 we have invoked two requirements to link a solution u

across an interface: the continuity of u itself (which has not

been stressed but should not be taken for granted) and the

continuity of flux (COF). It is possible to assume alternative
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interface conditions, depending on the applications one has in

mind.

In particular, we wish to compare COF with a condition

used by Collatz [1] and Meyn and Werner [4] to obtain maximum/

minimum principles and monotonicity results for functions

satisfying elliptic differential inequalities in regions with

interfaces.

In terms of our notation (v representing the unit

normal directed form A. to A.) the function satisfying Au < 01 J

in D' is shown to take its minimum on the boundary of D when

across the interfaces u is continuous and

(u) < (uQ)  (9)3i i

A maximum principle holds when the sense of the inequality is

reversed in both the differential inequality and the interface

inequality (9). (Note that by contrast the COF interface

condition is an equation, which may be used for both minimum

and maximum principles.)

A simple geometric interpretation may be given for (9).

With respect to the graph of u as a function of the normal

variable v, (9) says that when the interface is crossed the slope

u can not increase (see Figure 2). Indeed, if the slope

decreases (discontinuously) the concave-down corner (see the

figure) disallows a minimum value for u at the interface.

The COF condition and the Collatz-Werner condition (9)

are alternative interface conditions (on the normal derivatives);

either one, together with the continuity of u, is sufficient to

yield a minimum principle (for Au < 0 and similar elliptic
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inequalities). COF neither implies nor is implied by (9). A

dramatic illustration of this fact is that the Collatz-Werner

condition is inadequate for treating the application in Section 4

(uniqueness for steady-state heat conduction in a composite

medium), as we now show.

R&call that Au = 0 (therefore both Au < 0 and Au > 0 hold)

in each A.. Now the Collatz-Werner interface condition for a1

minimum (maximum) principle is (u ) < (u) i  ((u ) > (u ) ).(u j- _Vj --

Thus, to have both a minimum and maximum principle one would

have to require

(u (u)

continuity of the normal derivative, which is simply not the

case when (if u represents temperature) heat transfer takes place

between adjacent media with different conductivities.

In closing we remark that the COF condition is motivated

by some important physical processes while the Collatz-Werner

condition has a strong geometric motivation.
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ANALYTIC MODEL FOR SHOCK WAVE PROPAGATION INTO CON(AVE CORNCRS

'James A. Schmitt
Ballistic Modeling Division

U)S Army ARRADCONI Ball ist i c Research Laboratory
Aberdeen Proving (,round, Nil) 21005

... STRA(CT. When I ;hock wave i s incident upon a concave corner, multip e

refi ct i,,us ,ccur- and the pressure distribution on its walls are increased drania-
t i ca, v. A\ two-dittiensional analytic model is described which, when no diffracted
;hocks occur, determines the exact flow field values within the corner, and other-

wise, approximates the peak corner pressure. The solution is achieved by the repeat-
ed use of the oblique shock relations. An advantage of the model is that solutions
involving both regular and Mach reflections can be obtained by algebraic means
alone. Comparisons of the model with experimental shock tube data are given.

I. INTRODUCTION. When a shock wave propagates into a concave corner, it is
reflected one or more times from the walls forming the corner. Upon reaching the
corner, the direction of the shock propagation is reversed, one or more additional
reflections may occur, and, in general, the last reflected shock is diffracted.
These multiple reflections can cause tremendous increases in the pressure along the
walls. Therefore, such corners are very susceptible to damage from blast waves.

When the propagation direction of the incident shock lies in the cross-sec-
tional plane of a re-entrant corner of infinite width, a two-dimensional model of
this phenomenon is appropriate. See Figure 1. The mathematical problem correspond-
ing to this model with the additional assumption of infinitely long walls has been

1
solved analytically in several special cases. Lighthill considered an arbitrary
strength shock propagating into a corner with an apex angle which deviated only

slightly from 1800. Keller and Blank2 considered weak shock waves (acoustic waves)

propagating into any corner. Later, Keller 3 considered the special cases where no
diffractions of the regular reflected shock waves occur and determined the exact

solution by algebraic means. Schniffman et al4 considered a series of re-entrant
corner problems most of which involved corners formed at a right angle (some of
these corners had one finite length wall). For corners formed at non-right angles,
they considered only regular reflection within an infinitely long corner and used
approximations to the oblique shock relations in order to obtain estimates of the
resulting pressure field.

The purpose of this paper is to determine the peak pressure at the apex of a
corner formed at a general angle and for an arbitrary strength shock. The only
restriction on the corner angle and shock strength is that complex and double Mach
reflections do not occur within the corner. Although, in concept, the present model
may be extended to these cases, the model currently includes only regular and sim-
ple Mach reflections. Under the assumptions of the analytic model, the flow field
within the corner can be analyzed as a cascading series of straight line shock
reflections, except for possibly the final reflected shock. The model enables one
to trace the propagation of all the shocks within the corner, to determine the type
of reflection occuring at each reflection point within the corner and to calculate
the gas and shock wave properties associated with each reflection. The flow field
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SHOCK

Figure 1. Schematic of Incident Shock in a Concave Corner of Infinite Width.
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resulting from a shock wave propagating into an infinite two-dimensional corner can
be solved algebraically provided that the final reflected shock is not diffracted
as shown by Keller. However, if any shock is diffracted by either the leading edge
of a finite corner or the final reflection process, no exact analytic treatment is
possible. In these cases, an approximate technique (numerical or analytic) must be
used. The present analytic analysis will provide an exact solution of the flow
field if no diffraction occurs and an approximation of the apex pressure which is
comparable with experimental results if diffraction occurs.

II. ASSUMPTIONS AND INITIAL CONDITIONS. The assumptions made in this analytic
model are four:

a. The incident shock propagates with constant velocity and is symmetrically
placed within the corner. See Figure 1. This hypothesis permits the analysis of
a shock propagating perpendicularly to the plane of symmetry (a rigid wall) into a
corner which has an acute angle equal to the bisected angle of the physical corner.
This assumption, of course, can be ignored, if the incident shock is already propa-
gating perpendiculary to a wall. Since the incident shock velocity is constant,
its propagation can be considered pseudo-stationary if a frame of reference is
attached to the shock.

b. We presume the medium in which the shock wave propagates is a perfect gas
with neglible viscosity. The latter part of this assumption excludes the formation
of boundary layers along the wall, and enables us to idealize shock waves as discon-

5 .6tinuous surfaces. Following the derivation in Thompson or Courant and Friedricks
the jump conditions across a planar discontinuity are:

Pb(V b - ) • n - Pa(a W ) •n =0,(1

-12, (1)

0b [(Vb - *a (Va=pa -Pb, (2)

vb • t - va • t = 0, (3)

+ 2 h2
hb + a -(va ) = v), (4)

- - v a )+(4

where p, v, P. h, w, n, t are the gas density, gas velocity in laboratory coordinates,
gas pressure, gas specific enthalpy, the shock wave velocity, the unit outer normal
vector to the shock wave and the unit tangential vector to the shock wave, respectively.
The gas properties immediately ahead of the shock wave are denoted by the subscript a
and those immediately behind by the subscript b. The perfect gas postulate requires
an equation of state of the form h = yP/[(y-l)p] where y is the ratio of two constants
(the specific heat at constant pressure c and specific heat at constant volume cV).

The sound speed in a perfect gas is given by a = (yP/p) . Equations (1) - (4) are com-
monly known as the oblique shock relations and are valid at any point Q on the shock.
If the shock is a straight line shock in the immediate vicinity of Q, then the flow
is uniform in this neighborhood and the flow properties computed by the oblique
shock relations are also valid in this neighborhood.
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c. We assume the walls forming the corner are rigid and infinite. The rigidity
is a physical reality in most cases. The infinite extent of the walls eliminates the
rarefaction wave which is generated at the leading edge of the corner and causes the
curvature of some reflected shocks.

d. The fourth assumption is that only regular and simple Mach reflections occur
within the corner. The restriction is necessary since, at present, only these types
of reflections are modeled. The local conditions for the initiation and termination
of regular and simple Mach reflections are stated. Thus the procedure of the analy-
tic model will assign the type of reflection and the method to analyze it.

The initial conditions are the absolute pressure P0 and temperature T in the

undisturbed medium, the incident shock strength and the angle of the apex 2a. From
the initial pressure value and shock strength, the pressure behind the incident shock
can easily be computed. With the assumption of a perfect gas, the initial density

PO is given by the relation p0 = P0 /(T0 R*), where R* is the gas constant.

[II. REGULAR REFLECTION, MACH REFLECTION AND DISTINGUISHING CRITERIA. The

theory of regular reflection from a solid boundary is well known7 . Consider a
plane shock wave I which is propagating with a constant velocity, is incident at
point Q upon an infinite plane rigid wedge making an angle 0w with the horizontal,

and causes a regular reflected shock R to arise from the wedge. If we attach a frame
of reference to the point Q, the incident shock velocity is zero and the flow in region
O approaches I parallel to the wedge surface. See Figure 2. We define the region up-
stream of I as region 0, downstream of I and upstream of R as region 1 and downstream
of R as region 2. We wish to relate the properties in regions 0, 1, and 2 in a neigh-
borhood of the reflection point Q. While passing through the incident shock at an
angle of 0 = 9o - ew' the flow is deflected towards I by an angle 01 from its orig-

inal direction and its dynamic and thermodynamic properties are changed. These proper-
ties are related by the oblique shock relations (1) - (4) in the neighborhood of-point
Q. In these circumstances, the oblique shock relations can be simplified since ua =sb v 0 u in ( - 01) • u0 co
va - w, u - w, ua n = sin %0 u n = usin (0 ),a t 0 Cos

and ub t u I cos (t 0 1), and can be rewritten as:

1 '1 sin(O 0 - 01) = P0u0 sin 00, (5)

P1 + 1[u1 sin (0 0 1)]2 = Po + p [u0 sin 002, (6)

u cos (40 - a = U cos ( 7)

h + 0.5 [u1 sin -0 1)] 2 = + 0.5[ 0 sin 0]2 (8)
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U0

01 00
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U1#

REFLECTED Q2 /
SHOCK /e2/

REGION 2/
e ew

Figure 2. Schematic of Regular Reflection in a Neighborhood of
the Reflection Point Q.
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where we define u. = I-il. When the initial conditions of the analytic model (P0

Pis Too and 0w ) are given, the following quantities are also known p0 = P0 /(R*T 0)

and h0 = yP0/[(y-l)po0 ]. Thus, equations (5) - (8) represent a system of four nonlinear

algebraic equations in four. unknowns, u0, P1 ' u1 and al. since h1 = yP1/[(y-l)pl]. The

solution of this system is obtained easily. The explicit formulas for the unknowns
are derived in the Appendix. We note that the formulas in the Appendix are indepen-
dent of the type of reflection occurring at the point Q.

The flow deflection across the incident shock causes the flow in region 1 in
the neighborhood of Q to approach the reflected shock obliquely at an angle . While

passing through the reflected shock, the flow is deflected towards R by an angle 02

from its region 1 trajectory and its dynamic and thermodynamic properties are altered.
These properties are related by the oblique shock relations (1) (4) in the neighbor-

hood of Q. In this case, the velocities are ua n = u 1 sin 1 ub  n

112 sin (1 - 02), ua t = uI cos I1 and ub • t = u2 cos (A1 - 02). In order that

the resulting flow in region 2 adjacent to the wall is parallel to the wall in the
neighborhood of Q, the deflection angles must be equal, that is, 01 = 02. In this

framework both 01 and 0.2 are positive angles and the difference in deflection direc-

tion is incorporated in the formulism. The oblique shock relations can be written
in the form:

P2u2 sin 1 - 01) = p1u1 sin 11,  (9)

u2 cos (I - 01) = uI cos 11,  (10)

P2 + 2[u2 sin ( 1 - 01)] = Pl + 01UI sin 01] 2 , (11)

h2 + 0.5[u2 sin ( 1 - a)]2 = h1 + 0.5[u1 sin 01]2. (12)

With the solution of system (5) - (8), p1 , U1, P1 ' and 01, are known. Thus, equa-

tions (9) - (12) represent four nonlinear equations in four unknowns P2P p2, u2,

and 01. The solution to this system is more difficult to obtain, since P2 is not

known (previously P0 and Pl were known). The solution was obtain numerically by

utilization of the ISML subroutine ZSYSTM 9. ZSYSTM solves a system of N simulta-

neous nonlinear equations in N unknowns by using Brown's technique. Thus, the
entire flow field in the neighborhood of Q can be determined uniquely in this shock
fixed coordinate system from the given initial conditions. Furthermore, this flow
configuration can be verified experimentally for a class of incident shock strengths
and wall angles (or incident angles).
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The theory of single Mach reflections from a solid boundary is discussed in
References 8, 11 and quite completely by 12. Throughout this paper we will refer
to single Mach reflection as Mach reflections and state more complex Mach reflec-
tions explicitly. Consider a plane shock wave I which is propagating with a con-
stant velocity, is incident upon a plane rigid wall making an angle 0 with thew
horizontal, and causes a Mach reflection to arise from the wall. The frame of
reference is attached to the triple point T. See Figure 3. The incident shock I,
reflected shock R and the Mach stem M emanate from T as well as the slipline. The
trajectory of T is along a constant angle X from the leading edge of the wall surface.
The region upstream of the I and M is denoted by region 0, upstream of R and down-
stream of I by region 1, downstream of R by region 2, and downstream of M by region
3. The slipline divides regions 2 and 3 which have equal pressures and flow direc-
tions but different velocities. We wish to correlate the properties in these four
regions in the immediate vicinity of the triple point. In this shock fixed coordi-

nate system, the incident shock velocity is zero and the gas velocity in region 0
relative to the wall's velocity is parallel to the wall surface. The portion of the
flow in region 0 which passes through I makes an angle

0 = 900 - (0 + x) (13)

with I. The resulting flow is then very similar to that described in the regular
reflection case except that the flow in region 2 need not be parallel to the wall
surface itself, but only parallel relative to the wall's motion. With the assump-
tion that the incident and reflected shocks are straight line shocks at least in
the neighborhood of T, the oblique shock relations which now relate uniform ilow
properties in regions 0, 1 and 2 are:

PIuI sin (0 - 81) 1 Pou0 sin 0, (14)

Pl +P Ilu sin (0 - a1)2= P0 + Oleo sin O]2, (15)

uI cos (0 - 6I) = 0 Cos %' (16)

hI + 0.5 [u sin (% - a1)]2 = ho 0.5[u0 sin 0]2y (17)

P2u 2 sin I - 02) = PIuI sin 01, (18)

P2 + 02[u2 sin (01 - 02)1 p 1 I + Pl[u1 sin 1]2 (19)

u 2 cos (1 - 02) = U1 cos 1' (20)

h2 + 0.5Eu 2 sin (I - 02)]2 hI + 0.54uI sin €12 "  (21)
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Figure 3. Schematic of Mach Reflection in a Neighborhood Of the T ip le Point T.
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The portion of the flow in region 0 which passes through the Mach stem makes an angle
M with M. In general, the Mach ste:i ixll be a curved shock so that M will vary

with position along the Mach stem. While passing through the Mach stem, the flow is
deflected by an angle 03 from its original direction and its dynamic and thermody-

namic properties are changed. If the Mach stem is straight at least in the neigh-
borhood of T, the flow is uniform in the vicinity. These properties are related by
the oblique shock relations (1) (4). The oblique shock relations can be simplified

-4-). 4+ ++

with 'a n = u0 sin 0M" •k* n u3 sin N - 03) ' Ua " t = u0 cos OM and tb t =

u 3 cos (4M - 03) and rewritten as:

P3u3 sin M - 03) P0U0 sin OM' (22)

u3 cos M - 03) U 0 Cos OM (23)

P3 + P3 u3 sin ( - 03)]2 P0 + P0' 0 sin OM1
2 ,  (24)

h3 + 0.5 U3 sin M - 83)]2 h0 + 0.5[u0 sin OM] 2 .  (25)

Furthermore, the flow fields in regions 2 and 3 are related across the slipline,
namely, equal pressures and the same flow direction occur:

P3 = P 2' (26)

03 = 01 - 02. (27)

For the special case where X = 0, the triple point T attaches to the wall, the slip-
line and region 3 are nonexistent, and if one allows e3 = 0 equations (13) - (21) and

equation (27) reduce to the regular reflection case. For X # 0, equations (13) -
(27) represent 15 equations in 16 unknowns X, 00' U 0 ' P' uP'1' I1' 02' P2' P2'

U2, OMP 039 p3 P3 ' and UP, when the initial conditions (PO, Pl, T. and Ow) of the

analytic model are given. The perfect gas relations p = P/(R*T) and h = yP/y-l)p]
are assumed. Thus, only nonunique solutions exist for this system. In order to
obtain an unique solution, a simplification can be made: the Mach stem is assumed
to be a straight line shock. Except for strong diffractions, the Mach stem is only11
slightly curved. Thus, this assumption will not introduce gross errors and will
allow a uniform flow field about the Mach stem. Since the flow adjacent to the
wall must remain relatively parallel to the wall's surface in the laboratory coordi-
nate system after passing through the Mach stem, the Mach stem must intersect the
wall at 900. Consequently, we have the following geometric relation
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o= 90 - X (28)

along the entire Mach stem. Equations (13) - (28) form a system of 16 nonlinear
equations in 16 unknowns which can be solved uniquely in the neighborhood of T when
the initial conditions of the analytic model are given.

For nonstationary flow, the criteria for distinguising the sundry types of re-
flections are contained in References 8 and 12. Reflection occurs if the flow be-
hind the incident shock is nonsubsonic in the shock fixed coordinate system. Figure
4 delineates the regions of regular reflection (bottom section) from Mach reflections
(top section) in the angle of incidence - inverse shock strength plane. The curve
labeled * e is the limiting curve above which regular reflection is theoretically

impossible. The curve labeled c is the boundary below which the past history can-

not affect the reflection process. The experimental points indicate the smallest
incident angle at which Mach reflection has been observed. The termination of Mach
reflection occurs when the Mach number in the shock fixed coordinate system of re-
gion 2 is nonsubsonic.

The implementation of the regular and Mach reflection theories to form the ana-
lytic model for shock wave propagation into a re-entrant corner is best illustrated
by an example. In the next section, the model is used to simulate two shock tube
exp~er iment s.

rV. EXAMPLES AND COMPARISON WITH EXPERIMENTS. A series of shock tube experi-
ments which had a straight shock propagating in air perpendicularily along a shock
tube wall into a corner with apex angle of 50* were performed at the ARRADGOM
Ballistic Research Laboratory. in reference to Figure 1, the experiments simulated
the corner with 2ai = 1000 and with the shock tube wall substituting for the plane
of symmetry. The length of the rigid material forming the wall of the corner was
0.166 m. A pressure gage was inserted at the apex and the pressure-time history

of the apex was obtained. 13The extent of the corner's width was long enough as to
consider it infinite. In an experimental series, the weakest incident shock had a
pressure ratio of P I/P 0 = 1.1231 and the strongest incident shock had a pressure

ratio of P I/P 0 = 2.3699. In the experiments, assumption a of the analytic model is

satisfied and assumption d will be shown to be satisfied. Consequently, in the
simulation of these experiments by the model, we note that air does not strictly
satisfy the perfect inviscid gas assumption and the walls forming the corners do
not have infinite extent. The latter restricts the model's prediction to the cal-
culation of the peak apex pressure value, since the amplified pressure value of the
apex will be decreased by the arrival of the rarefaction wave from the leading edge
of the experimental corner. To obtain the time-dependent decrease of the apex pres-
sure, a hydrodynamic computer code simulation of the entire experiment must be per-
formed.

Let us consider the straight line shock of strength P /P0 = 2.3699. See Figure

5. From the geometry, the incident angle is =0 40'. The medium is assumed to

-406-

p.. A.



4) 80-

- Experimental points ke

LU
0 60zLU
0

U_0

U

O 20 I I
Z 0 0.2 0.4 0.6 0.8 1.0

INVERSE SHOCK STRENGTH Po/P 1

Figure 4. Criterion for Determining the Presence of Regular and Mach
Reflection (Adapted from Reference 8).
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P, 238.55 kPa REGION 0

REGION 140

REGION 2 REGION 0
P0 = 100.66 kPa

P2= 521.08 kPa 90 = 400

50 °

Figure 5. Schematic of the Flow Field Before Incident Shock
(PI/P 0  2.3699) Reaches the Apex.
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have constant specific heats cv = 714.0 J/(kg K) and c 1001. J/(kg K), and a

gas constant R* = 287.03 .J/(kg • K). The initial state of region 0 is characterized

b. 0) = 100.66 kPa, T0 = 295.48K, and zero gas velocity in the laboratory coordinate

system with its origin at the apex. Consider a point Q on the corner wall at which

the incident shock impinges. If we make a Galilean transformation at Q, we can apply
the formulas in the Appendix. In the shock fixed coordinate system, we compute I 1

g/3

2.1561 kg/r n 667.5 m/s, T I = 385.45K, 01 15.208 ° and a1 = 393.84 m/s. Since

the flow is supersonic in region 1, reflection occurs at Q. The point 0 = 40' and

S1 /1 = 0.4168 falls below the e curve and thus, regular reflection occurs at Q.

Solving the four equations governing regular reflection, equations (9) - (12), in

the neighborhood of Q with ZSYSTM termination parameters EPS = 10- , NSIG = 13 and

ITMAX = 100, we obtain P2 = 3.7132 kg/m 3 , u 2 = 488.09 m/s, P. = 521.08 kPa and

1 = 56.893'. From geometric considerations, the angle of reflection is 41.685*.

With the assumption of an infinite corner, rarefaction waves do not presently exist

within the corner and the incident and reflected shock remain straight. Thus, the

gas properties behind these shocks are uniform and the values of the flow properties

calculated in the neighborhood of Q are those behind the entire extent of the shocks.

Upon transforming back to the laboratory coordinates, we obtain the configuration
depicted in Figure 5. The gas properties in regions 0, 1 and 2 are summarized in
Table 1. (The velocities in the shock fixed coordinate system are denoted by u but
in the laboratory coordinate system by v.) The shock wave speeds of the incident

and first reflected shocks are denoted by vI and vR1 , respectively. We note: that

the velocities in the laboratory coordinates in regions 1 and 2 are parallel to the

plane of symmetry and the corner wall, respectively; that the angle of incidence is

not equal to the angle of reflection; and that this one reflection process has al-

ready increased the pressure near the wall by a factor of 5.18.

The pseudo-steady flow of Figure 5 remains unchanged until the incident shock

reaches the apex. At that instant only the first reflected shock remains (only
regions 1 and 2). This shock continues to propagate along the plane of symmetry
with an angle of 8.315 ° and a speed of 3637.0 m/s. With an inverse pressure strength

of P2 /PI = .4578, regular reflection occurs at any reflection point Q' according to

Figure 4. See Figure 6. Since the flow properties are already calculated in regions

1 and 2, only the flow in region 3 must be calculated. We make a Galilean transfor-.
mation at Q'. In this shock fixed coordinate system, the velocity magnitudes are

u = 3865.52 m/s in region I and u2 = 3838.63 m/s in region 2 and the flow deflec-

tion angle across the shock is 3.4040. Solving the four equations governing regular

reflection, equations (9) - (12), in the neighborhood of point Q' with identical
3

zsYsTM termination parameters as before, we obtain p3 = 6.0394 kg/m , u3 = 3808.8 m/s,
P = 1.045 MPa and , = 9.0690. From geometric considerations, the angle of reflec-

tion is 5.605 °. With the infinite corner assumption, the second reflected shock

remains straight and the gas properties behind the shock are uniform. Thus, the

values of the flow properties calculated in the neighborhood of Q' are those behind

the entire extent of the second reflected shock. Upon transforming back to the
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Table 1. Regional Flow Properties in Laboratory Coordinates.

Region 0 Region 1 Region 2

Po = 100.66 kPa P1 = 238.55 kPa P2 = 521.08 kPa

PO = 1.1869 kg/m
3  P1  = 2.1561 kg/m 3  P2 = 3.7132 kg/m 3

TO = 295.48 K TI = 385.45 K T2 = 488.91K

a0 = 344.82 m/s a, = 393.84 m/s a2 = 443.56 m/s

V ox = 0 m/= 228.52 m/s v2x = 194.62 m/s

o = 0 m/s v= 0 m/s v 231.94 m/s
=Orn/s 2y

vI = 508.36 m/s vRI = 525.96 m/s VR2 355.24 m/s

Region 3 Region 4* Region 5*

P3 = 1.0447 MPa P4 = 1.8913 MPa P = 1.8913 MPa

P3 = 6.0394 kg/mp 4 = 9.1668 kg/m p5 = 8.7707 kg/m

T 3 = 602.65 K T4 = 718.80 K T = 751.26 K

a3 = 492.46 m/s a4 = 537.83 m/s a = 549.84 m/s

V3x = 171.8 m/s V4x = -33.492 m/s v = -101.90 m/s

V3y = 0 m/s V4y = -75.358 m/s vsy = -121.42 m/s

VR3 = 479.713 m/s VR4 = 497.18 m/s

*These values are valid only in the neighborhood of the triple point.
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Figure 6. Schematic of Flow Field Shortly After Incident Shock

-4 11-



laboratory coordinates, we obtain the flow field in Figure 6 with respect to regions
1, 2 and 3. The gas properties of region 3 are given in Table 1. We note that the
gas velocity in region 3 is parallel to the plane of symmetry. The speed of the
second reflected shock is denoted by VR2'

The second reflected shock will subsequently impinge on the corner wall at an
angle of 55.605*. With an inverse shock strength of P2/P3 = 0.4988, Mach reflection

occurs at the wall according to Figure 4. For Mach reflections, a Galilean transfor-
mation is made at the triple point T. The velocity of the triple point depends on
an unknown X of the configuration (see Figure 3). Thus, in the shock fixed coordi-
nate system for Mach reflections, the values corresponding to 0, u0, u1, 61 are not

known, even though in the laboratory coordinate system they are known. Since the
thermodynamic properties are independent of the coordinate system, the values cor-
responding to P0 PI P0 ' P1 are known along with the wall angle 6w = 900 - 55.6050.

In reference to Section I1, we have now 15 equations and 15 unknowns (p1 is now

known). It was found by the author that the solution of these equations is more

simply obtained by the following procedure: (a) guess an initial value of X, XG ,

and compute the corresponding My from equation (28); (b) solve an appropriate

subset of the equations corresponding to equations (13) - (27) for 01I' 62P P2 P P 2P

u2 0 OM 1 ' p3 P P.3 and u3 with the subroutine ZSYSTM; (c) iterate on X until
c

- is zero within a given tolerance. Following this technique (tolerance

= 10-4), the solution of the flow field in the neighborhood of T in the shock fixed

coordinate system is X = 11.083, 0= 48.664'0 @m = 83.059-p 0 = 13.710-, 1 =

80.807, 0, = 4.6080, e3 = 9.101, u0 = 805.86 m/s, u I  649.33 m/s, u2 = 434.86 mI/s,

3 3
u3 = 352.39 m/s, p2 

= 9.1668 kg/m, P3 = 8.7707 kg/m
3 and P2 = P3 = 1.8913 MPa.

Table I lists the values of the flow variables in the laboratory coordinate
system. From geometric considerations the angle between the second reflected shock
and the reflected shock in the Mach configuration is 64.2390. If we extend this
Mach reflected shock in a straight line to the plane of symmetry, the incident
angle at the point of intersection Q- is 110.1560 - an obtuse angle. Thus, no
more reflection can occur. This reflected shock must then impinge at Q- at a
right antle to the plane of symmetry in order that the gas flow in the neighborhood
of Q- remains parallel to the plane of symmetry. Consequently, the reflected
shock must be curved to satisfy the required angles at points T and Q", and the
flow properties in region 4 arc not uniform. See Figure 6. The exact values of
the flow properties in region 4 must be obtained by a hydrodynamic computer code
simulation. However, an approximation of the pressure values in region 4, and,
thus, at the apex can be obtained by taking the pressure value calculated in the
intersection of region 4 and the neighborhood of T as the apex value. Although
obviously incorrect, the resulting pressure value gives a comparable peak pressure
value to those of experiments while retaining the simplicity of the model. We note
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that if the incident angle at Q- was acute, Q' would be another reflection point
and the method of analysis would have continued. If the incident angle at Q - was
900, no further reflection would have occurred and the final shock would not have
been diffracted. In such a case, the reflected shock would remain straight, the
gas properties in region 4 would be uniform, and the method would give EXACT values
of the flow field within the entire infinite re-entrant corner. The Mach stem is
straight and intersects the wall at 900 according to the discussion in Section T[H.
Its speed is denoted by VR4* The velocity in region 5 is parallel to the wall.

The pressure near the wall behind the Mach stem has increased by a factor of 18.8.
The curved slipline separates regions 4 and 5 which has identical pressure values
across it. The velocities in regions 4 and 5 relative to the unsteady motion of
the slipline are parallel to the slipline. Because region 4 is nonuniform, the com-
puted values are valid only in a neighborhood of the triple point and care must be
used in any extrapolation. For example, the velocity in region 4 given in Table 1
is obviously wrong near the plane of symmetry. The speed of the Mach reflected
shock vR3 is also correct only in the neighborhood of T.

The second experiment with an incident shock strength of PI/P 0 = 1.1231 was

analyzed in a similar fashion. Conceptually, the only difference in the analyses
is that at the last reflection point, regular reflection occurred instead of Mach
reflection. As before, the last shock wave was diffracted and the pressure at the
final reflection point was taken as the apex pressure value.

Initial
Strength Peak Apex Pressure Values

P1/P0 Analytic Model Experiment

1.1231 165.44 kPa (154.58 ± 2.69) kPa

2.3699 1.8913 MPa (1.8195 ± 0.0859) MPa

Table 2. Analytical and Experimental Peak Apex Pressure
Values for Two Incident Shocks.

Table 2 lists both the experimental peak apex pressure values with error bars
and the approximate apex pressure value of the analytic model. For the weaker shock,
the difference between the pressure values is 7.0 percent and for the stronger shock,
the difference is 3.9 percent. The model predicted value for the stronger shock is
within the expcrimental error. The comparison of the stronger shock results indi-
cates that the closeness of the point ( = 400, P0 /P 1 = 0.4168) associated with the

first reflection to the c curve of Figure 4 does not invalidate the model. In both

comparisons, the analytic pressure values are greater than the experimental pressure
values because the analytic value is the pressure value at the shock front (the last
reflection point) of the expansion wave emanating from the apex which is larger th.11
the pressure values behind the shock front.
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V. SUMMARY. A simple, widely applicable analytic model for shock wave propa-
gation into re-entrant corners is discussed. The mathematical techniques used in
the model are simple; namely Galilean transformations and a method to solve a non-
linear system of algebraic equations. Its wide applicability stems from the fact
that both regular and Mach reflections are modeled. When the final reflected shock
is not diffracted, the model calculates the exact solution of the entire flow field
within an infinite corner, or the exact solution of the flow field near the apex in
a finite corner until the rarefaction wave(s) reaches the apex. l.hcn the final
reflected shock is diffracted, the model provides an estimate of the peak apex pres-
sure value which is shown to be comparable to experimental values. The model's
delineation of the corner into distinct regions is verifiable by a hydrodynamic
computer code simulation. See Reference 14. Because of the model's predictive
capabilities, the model could be used as an aid to experimental design and as a
benchmark problem for hydrodynamic computer codes.
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APPENDIX

We multiply equation (6) by the quantity [- + I], use equation (5)and

obtain:

(Pl - P0) [1 + L = .5 [u, sin2 - U2 s I' - el)]. (Al)

Rewriting equation (8) in terms of pressure and density instead of enthalpy, we
have

S1 T[ -] =0.5 [u0 2 sin2 0- ui nI 2  - e1]. (A2)

We equate the left hand sides of (Al) and (A2). Multiplying the resulting equation
by the ratio pl/Po, we obtain the density in region 1 in terms of y, P1 /P0 and 00:l r .l i/f ..l

0 ... y+ 1 111' [ , i+f (A3)1 0 L-1Y- Po 1f ]L -1j oA

The ratio of equations (5) and (6) is

P1 tan (€0 - 01) = P0 tan 0"* (A4)

From equation (A4), the deflection angle 81 can be expressed as:

I= 0 - tan-1 [(P0 tan €0)/Pi] . (AS)
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The velocity magnitude in region 0 can be expressed in terms of the quantities u1,

0 and a1 from equation (7):

U0 = U1 cos( 0 - 01)/(cos *0) .  (A6)

Using equation (A6), we can rewrite equation (6) as:

(PI - P0)/Cos 2(N - e1) = u1
2 [-01 tan2(*0 - e1) + PO tan 2 40] (A7)

Using equation (AS), we rewrite equation (A7) as:

ul =+ [ O sin 0 (A8)

By solving equations (A3), (AS), (A8), and (A6) in order and by applying the perfect

gas relations h1 = YP1/[y-O)P1], T1 = P1/(R*p 1) and a1 = (yPl/P 1)I, we obtain all the

values of the flow variables in the intersection of region 1 and a neighborhood of

the reflection point Q.
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ABSTRACT. A priori estimates for the initial boundary value problem forthe

linearized equations for gas dynamics in three space dimensions are discussed.

The strengths of the different estimates which are obtainable with different

specifications of boundary data will be emphasized. The estimates presented are

obtained by the energy method techniques of Friedrichs and/or by extensions of

normal mode analysis techniques of Kreiss. Limitations of the two techniques are

discussed. Boundary conditions for subsonic and supersonic flows with rigid wall

and open boundaries are included.

I. THE PROBLEM. The Eulerian equations for gas dynamics in three space

dimensions can be written in the form

d
- _ + a grad p + F = 0

d()d- o - adivu= 0

dT- p + p y div u = 0

where u = (ulu 2 ,u3 ) is the velocity vector, ce 1/p is the specific volume,

p is the density, and p is the pressure. y = cp /Cv  is the ratio of specific

heats at constant pressure, Cp, and at constant volume, cv . For the material

derivative d/dt we have

d - + u grad

TtE t+ ,

The term F contains zero order or undifferentiated terms which might represent

• The author has been sponsored in the course of this work by the United States
Army under Contract No. DAAG29-75-C-024 and by the Office of Naval Pesearch
under Contract No. N00014-75-C-1132.

Current address.
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coriolis Vorces, etc.

We will consider the initial boundary value problem for the linearized

equations corresponding to system (1). If we let q = (ulu 2 ,u3 ,r,p)' be a per-

turbation of the state 3 = UU2u3',,p) the linearized equations corresponding

to (1) can be written

+ A (i) ax +f (2)
j =1

where

U, 0 00 of u 0 0 0 0

o 10 0 0 0 u 2 0 0 a

0 0 U]. 0 0 A 2 (i)= 0 0 "20 0

-&0 01 0 0 -;,o U2 0

LyO0 0 0 ui %0 py 0 0 u.

and

i5 3 0 0 0 0

A3_) 0 0 u3 0

0 0 -u30

%0 0 jPy 0 u-

The matrix C arises from the linearization process and the zero order term F

This is discussed in detail in [6] . The matrices AjJ= 1,2,3, are not

symmetric but they are simultaneously symmetrizable.

If we let R be the positive definite matrix

100 0 0

0 1 0 0 0

-10 0 1 0 0R = of 2 ,/
0 0 0 a (l+

where a2  is an arbitrary positive real parameter and define T by

T*' "- = R , then T-1A T is symmetric for j 1,2,3. The matrices A have

the real eigenvalues u ,uA ,uii + and ,J- E where a= (i) is the sound

speed. It follows that (2) is a symmetrizable hyperbolic system but it is not

strictly hyperbolic.
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We are rrnerally interested in estimato:- of th, soltit.ior of eou-- io- K

doma in:" Io,2] :I where : I is open with a compact ' bourr:r -

in terms of initial data q0 defined on C2 ; suitable boundry dla:,

definjed on x ; and the forcing term f. in order to sim.if7 c'"

noLation and discussion here we will consider the qmartcr-space prolem or

i.e., we will consider solutions of (2) for (t,x) (C,-) X (C,) I. C

satisfy initial conditions

q(O,x) r (x) 0 < x, < -, -c < x 2 ,x < Co (3)

and boundary conditions

M(q)q = g(t,x) t C (0,-), x1 = O, < x2 ,x7 < , (4)

where M is a matrix. Our main interest here is the strength of the estimnates

we can get for different M We assume compatibility of (3) and (4'

in the space-time corner x 0, t = 0 •

Extensions to more general domains are immediate for those results obtained

via the classical energy method of Friedrichs, see Oliger and Sundstrbm [ 6 ]

The extension to more general domains of those results obtained v-ia the normal

mode analysis technique of Kreiss is discussed by Majda and Osher [4 ]. The form

of the estimates is not affected.

Define =Illj,0, I1e-it/Q-qllHJ(g)

where (G Ilxj () is the usual Sobolev norm,

HI] J(G) I  L (G)

for integer j with a a multi-index with n=dim G components. We define
IIiH (G) in the usual way for fractional j . Let v denote the projection of

q on Ker A We seek estimates of the solution of (2) satisfying (3) and (i)

of the form

IJq(t)Jlo,0, +TV'_iaJo[ 0,tI× + '1Y1o,[o,t]X C 0,1 (6)

< c(lkollo,, 1 ! , t + .l- ,t x Cr)

for a constant C and T sufficiently large where

0 [ x c F3: 0< C < x < C, < 2 ,x < O) and 0 = o
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U: C ",:.i nof :1 io: and developmen C', tCl?1V'lt her

I c 1' ra -L r .1 .1 .'. . :il.. o.l....... .. o e

i. " 0- !"1' 0"" V ! l -

r ' r we choo-re our bo.nI-iry( co',-io_ or

12_ v. . , , or 1 , " 'n1 p of

o"' C o 1 I C00CC

-':0 . . . .r r ? of these es"ti v--" were C,--,-d A

* . -i :.:'. of _. f or' (" e _;t' r anc ,-- ( ca:-. L: op~tained ea>1l!: mI:.

. - ' -i:. can fron a t-rowth e muatio_

--, q _ 
<  ' , f l'i! <7

where i ic an inner producu norn

= a/

which 1.- equivalent to the L2  norm. R is the matrix defined in Section 1. Ile

estimate Vj) will follow from (7) using integration by parts if

B1(q) S q Aq < 0 when g = 0 . (8)

If this is not the case this technique provides us with no information.

There are several important problems for which (8) can be easily verified.

Case 1. A solid wall boundary. The physical boundary condition is that the

normal velocity should vanish at the boundary, in our situation uI = 0 at x C.

In this case Ker A has dimension 3 and B(q) 0 0 . We obtain (6) with c 0

and j = 0 This is the only case we will consider here with v U

Case 2. Supersonic inflow or outflow. If u 1 > c > 0 we have supersonic

inflow. If we take I.I = I , i.e., we specify all quantities, then B(q) F 0 and
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we obtain (6) with c = 0 and J = 0 If u I < c < 0 we have supersonic out-
flow. If we take M 0, i.e., we specify nothing, then B(q) < 0 and we obtain

(6) with E = 0 and j = 0

Case 3. Subsonic outflow. If c < UlK we have subsonic outflow. In

this cae the positive eigenspace of A, has rank one and an examination of (8)

shows that we can obtain (6) via the energy method only if (4) yields a relation-

ship of the form

u_- P(/(-,y)) = blu2 + b2 u3 + b 3 [Ul + P(&/y)) ]

+ + &( !+ g(t,x2,x3)

where the b i must be chosen to satisfy (8). It is easy to see that (8) is satis.

fied if we choose bl= b 2 = b 4 = 0 and b 3 = -1 . This is simply giving the norma

velocity u1 as data. In this case we again obtain (6) with c = 0 and j 0

(8) is also satisfied if we give the pressure as data, or set bI= b2 = b4 = 0 and

b3= 1 , and we obtain the same estimate.

Case 4. Subsonic inflow. If 0 <_u, < c we have subsonic inflow. In this

case the dimension of the positive eigenspace of A1 is 4 . If we examine (8)

we find that M must be chosen to yield relations of the form

u2  aI w + gl(tx 2 ,x3 )

u3 = a2 w + g2 (tx 2,x3 ) (9)

uk- P(G/( y))i 3 w + g3 (tx 2 ,x3 )

+ P(/(y) = a w g4 (tx 2 ,x)

where w = u1 + p(&/(jy))A . Furthermore, we will be able to satisfy (8) iff

U3( +a2 +a02) + ji (c_.,) a 2 < i(c + 1 ) (10)

where a is the positive, real number in the definition of R

We can certainly satisfy (9) and (1O) and thus (8) to obtain (6) with =C

and J = 0 if we choose a =a 2 = a3 = a4 = 0 . There are clearly many other

choices of the aj which will yield the same estimate via (8); however, there is

no possibility of obtaining an estimate via (8) if we want to specify

data for any four of the components of q directly. This is a major point of

this paper and provides the motivation for the next section.
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III. RESULTS VIA NORMAL MODE ANALYSIS. We have noted in the last

section that the energyj method fails if we want to analyze boundary conditions

for subsonic inflow sinh giving ,uu, and oi ; or u- v and p 7he

corr 'oninL .,I mtrCe: sti7f , o 'r erlier hypothese- and their convenience in

t'rnm of' usili:,ing co,:rionly mea.urcd ,uantizies ic obvious.

7C m:-!yZ, the::e bOtur.- ,,-jr- K-n o:_ turn to the normnal !-ode a-nly.: ,ch-

Y , , ' ' only tol s trictly hype rbolic c%',e and a: we

,, ',ct -,r-cly hyI-r olic. r owever, It.

..o o uevec t , d Tsher, their "blok :-tvicturc" hyo-

the: e o-ob',.-_ 7ti.l 1 n' quit,1 .t ir; thc Majdi and Zher fr mnework

e r i 'u ,01ce ' " 1, m Kreias "ondition". However, they

are li a, z '. te:a-: xa-nned by Kr):s i%.ty. akr, .nd the MaJda and COher frmework

catn o ,. nd to co:.r .. bc- r ,r conditiun: we are now considering. Ihe tech-

nical detail: of thi: development will be -ontained in liger and Sundstr6m 7 1

in this s.ione will orcly di_;cu:-:,he ,ulsonic inflow problem but we remark

that the c.ses previously discussed could also bp treated using the techniques of

t's s'ection with the xception of tee rigid wal boundary case. At this time there

is no thaoreti-cgl Justification for this application. The boundary is characteristic,

but it does not usually belong to the class of uniformly characteristic boundary

problems which have been studied by Majda and sher.

The estLmates (6) are obtained in the normal mode analysis technique by apply-

ing freezing arguments utilizing pseudo differential operators, PsDOp's. The con-

struption of the appropriate PsLip's needed here follows from that of Majda and

Osher but a modification like that of Miyatake is needed because of the existence

of generalized eigenvalues ] ]. Finally, the proper form of the estimates for these

two cases follows using the techniques of Kreiss [3 ] for the generalized eigenvalue

case.

The estimates are obtained via the machinery mentioned above by estimating

solutions of the frozen ordinary differential equations

A ( (to o ) _L^AA0^11i OI0d '9 (ox)+'9 (toXo) + s I) =o n

M(Xt 0 3 = g

which is formally obtained for each (to,x O) on (O,c) x a 0 by Laplace transform
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in t with dual variable s and Fourier transform in x2 ,x 3 with real dual

variables 2' after dropping all undifferentiated terms. Al(x ,tO ) can be

transformed to diagonal form in the cases we consider via a transformation P(t.,x)

so we need only estimate solutions of the ordinary differential equation2

d

where ..(s,i,2) = P q . This is accomplished using the standard techniques for

linear systems of equations with constant coefficients. It is algebraically messy

since a number of different eigenvalue-eigenvector representations must be used for

different values of s, 1 and 2 "

We now state our results for the two cases we are considering here.

Theorem 1. If ul,u2 ,u3  and a are given as data for subsonic inflow the

estimate (6) holds with either E = 0 and j =1 or for arbitrary E>0 and

j = 0 . Furthermore, these estimates cannot be improved in the sense that (6) does

not hold for E = 0 and j = 0 •

In this case there is, in Kreiss' terminology [ 3 ], a generalized eigenvalue of

the first kind.

Theorem 2. If u2 ,u3,Q' and p are given as data for subsonic inflow the

estimate (6) holds with E = 0 and j = 1 . Furthermore, this estimate cannot be

improved in the sense that (6) does not hold for j < 1 for any E > 0

In this case there is, in Kreiss' terminology, a generalized eigenvalue of the

second kind. As pointed out by Kreiss the situation is even worse in this last

case because the introduction of another boundary and boundary condition on it can

lead to further loss of derivatives as the waves reflect from one boundary to the

other.

IV. DISCUSSION AND SUMMARY. We begin with a few remarks about the two

methods we have used to obtain estimates in the last two sections. The classical

energy method is definitely easier to push through when it works but doesn't give

as much insight into just what choice of boundary conditions, M , might work as

the normal mode analysis method. The energy method, since it is based on integration

by parts, is easier to extend to boundaries which are only piecewise smooth. Only

the energy method is justified at present for characteristic boundaries which are

not uniformly characteristic, see [ 4] . However, we are more limited with regard

to the form of M which we can treat with the energy method and we can only ob-

tain sufficient results.
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Finally, a few words about the boundary conditions treated in the two theorems

of Section III. In both cases, giving ul,u 2 ,u 3 , and c , or uua,p ; we

obtain weaker estimates than we got for the other boundary conditions. There is

a "loss of smoothness". In the first case, Theorem 1, this is not a serious problem

since we maintain internal regularity and the introduction of a second boundary

does not cause further problems. If we use the boundary conditions of Theorem 2 we

can have a continued loss of smoothness globally if we introduce a second boundary,

i.e., treat a bounded region. There seems to be a big difference in these two

boundary conditions if difference approximations are used to approximate the solu-

tion. Elvius and Sundstrbm [ 1 1 were able to successfully implement approxima-

tions of boundary conditions analogous to those of Theorem 1 for the shallow water

equations where the same type of estimates hold but were not able to successfully

compute with boundary conditions analogous to those of Theorem 2 when, once again,

an estimate like that of Theorem 2 held. John Strikwerda, private communication,

has had similar experiences with the equations for gas dynamics, i.e., the boundary

conditions of Theorem 1 can be successfully approximated but it seems that those of

Theorem 2 cannot be.
The stronger form of (6), (c = o, j = o) cannot be obtained for the subsonic

inflow problem if boundary data is given directly in terms of any four of the five

quantities ulu2,u3 ,1,p . The same situation exists if we were to use potential

temperature in lieu of a , say. We must give data in terms of linear combinations

of these variables if we want the stronger estimates. While the estimate given in

Theorem 1 may often be satisfactory, it seems worthwhile to look for other prog-

nostic variables in which the equations can be written in order to obtain stronger

estimates with boundary data that has physical significance and/or is readily

measured in a straightforward manner.
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ABSTRACT. Efficient multistep procedures for time-stepping Galerkin methods

for nonlinear parabolic partial differential equations with nonlinear Neumann
boundary conditions are presented and analyzed. The procedures involve using a
preconditioned iterative method for approximately solving the different linear

equations arising at each time step in a discrete time Galerkin method. Optimal
order convergence rates are obtained for the iterative methods. Work estimates of
almost optimal order are obtained.

I. Introduction. We shall consider the numerical solution of nonlinear para-
bolic partial differential equations 4ith nonlinear Neumann boundary conditions of

the form

a) c(x,u) 2- V * [a(x,u)Vu + b(x,u)) = f(x,t,u), x E 2, t E J
at

b) a(x,u) + b(x,u) - V = g(x,t,u) , x E ;Q, t E J , (1.1)

c) u(x,0) = u0 (x), x E Q

where P is a bounded domain in R , d < 3, with boundary aQ, v is the outward
unit normal to 3Q, J E (0,T], and c, a, b, f, g, and u0 are prescribed. We

shall use a Galerkin approximation in the space variable and high-order, efficient,
multistep time-stepping procedures. We first present basic multistep time-stepping
procedures which produce a different linear system of equations to be solved at
each time step. We then modify the basic procedures by usinq a preconditioned
iterative method to approximate the solution of the linear equations. The use of
a time-independent preconditioning matrix eliminates the need to refactor a new

matrix at each time step, while the iterative procedure stabilizes the resulting
algorithm. Using this modification, we obtain the same order error estimates as
for the base scheme with greatly reduced computational requirements. We obtli:.-

very nearly optimal possible work estimates for our procedure.

Galerkin procedures for parabolic problems with nonlinear Neumann boundary
conditions were first considered by Douglas and Dupont in [8]. Then, in (171,
Luskin extended the work cf [8] to quasilinear equations similar to those con-
sidered here. Luskin used Crank-Nicolson time-stepping methods which are second

Sponsored by the United States Army under Contract Nos. DAAG29-75-C-0024 and
DAAG29-78-G-0161. This material is based on work supported by the National Science

Foundation under Grant No. MCS78-09525.
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order correct in the time discretization. In 112], the author used the iterative
stabilization techniques developed in 19, 10] to present computationally efficient
variants of the methods of Luskin and extended these methods to treat coupled sys-
tems of nonlinear partial differential equations with nonlinear boundary conditions.
In this paper, we present time-stepping procedures which are higher-order in time
than those analyzed in [8-13, 17]. These time-stepping schemes are based on the
backward differentiation multistep schemes [cf. 15, 14, 19]. They have been pre-
sented and analyzed for quasilinear parabolic equations by Bramble and Sammon in
12, 71. Very efficient alternating direction variants for use on rectangular
domains will appear in 14, 5].

The efficient time-stepping techniques presented here can also be used to
analyze approximation procedures for initial boundary value problems for many other
types of nonlinear partial differential equations. The author has applied itera-
tive stabilization techniques to equations of Sobolev type (in 110]) which have
applications in thermodynamics, fluid flow in fissured rock, and shearing of second
order fluids. In 111, 12), the methods are applied to coupled systems of equations
which model miscible displacement in porous media. Also the author has used itera-
tive methods successfully for second order in time equations (in 113]) which have
applications in vibrational problems and nonlinear viscoelasticity.

In Section 2 we introduce certain notational preliminaries and present the
base time-stepping Galerkin schemes. In Section 3 we present our iterative modi-
fications of the base methods and analyze the effect of the iterative approximation
on a single time step. In Section 4 we obtain global error estimates for a partic-
ular multistep method. Section 5 contains a brief discussion of the computational
complexity of the methods presented.

II. Preliminaries and Description of Galerkin Methods. Let ('p,) = f dx,

11ii- (i,$), (P*) = &20*ds, and Let w€fg) be the Sobolev
space on n with norm s

k 1/s

with the usual modification for s = -. When s = 2, let 1#wk - 1011k - R*R
- V H

2
and If k- 1#1 k - *1 if VF (Fr ,F ), write IVFD in place of

2 a

I(Ii k + l1F21 . For definitions of corresponding fractional order spaces,

see [161.

Let (MhI be a family of finite-dimensional subspaces of H (0) with the

following property:
For p - 2 or p m there exist an integer r > 2 and a constant K0

such that, for 1 < q 'r and * C Wq(1),P
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mq

inf Ihp-Xiiw0 + hII -X1I 1 < K 011I'l Wq h  (2.2)
XE Mh W pW -o p

We also assume that {Mhl satisfies the following so-called "inverse assumptions":

if E

a) 1- K 0

b) n 1J 1 - / 2 Ko l l , (2.3)
0

d

C) ilil + h! VOL < Koh 21141

L'(O) L (n) 0

Restrict Q as follows (with (S) denoting the collection of restrictions):

1) n is H -regular.

(S) : 2) D2 is Lipschitz.

3) There exists a constant K0 such that

1,P 2  < K 0 II II II1  (2.4)

If X is a normed space on Q with norm II IX and P : [0,T] X, then we
define

a) lk l = P J(t)J 11 ,d 1/ 1 < s < C
LS(J;X) (2.5Ifo (2.5)

b) II1PII = sup HlI(t)l1
L (J;X) tEtO,T] X

Throughout the paper we shall assume that a and c are bounded above and
below by positive constants and that a, b, c, and g are smooth functions of
their arguments. We shall also assume that the solution u is sufficiently
smooth for our arguments to hold. For typical explicit smoothness assumptions on
u and the coefficients, see [8-12, 17].

As in 1181, we shall introduce an auxiliary elliptic problem to aid in our
analysis. Let X > 0 be chosen sufficiently large that the bilinear form

N( ,X) - (a(*)VV,VX) + )(dp,X) - (g(t,o),X)

satisfies

N(*;, 'KoIlI, >,K P Mh2.
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Let W E Mh be the projection of u into Mh, defined, for each t C J, by

4(u(°,t); W(,t),X) = N(u(,t); u(,t),X) (2.6)

au
(c(u) w,X) + (b(u),VX) + (f(u),X) + )(u,x), X E Mh

Then, as in [8, 9, 12, 18], we can obtain the following lemma.

Lemma 2.1. There exists a constant K 1 = KI(u) such that if n = u - W, s = 0

or s = 1, and 2 < q < r,

a)1 1L CO(J;Hs) -1 -1 ulL.(;

(2.7)b) 11 " < Klh q-s(,uL I I3211L2cJ;.s) -C,%L =.
(JH5 u- L ~2(J;H q) + I itII

In order to require weak smoothness assumptions on a, we shall need to use
some duality theory and obtain some approximation theory results in negative-
indexed norms. For these results, assume that 1, a, b, c, and g are suffi-
ciently smooth 116] that for each t E J, if

a) - V • [a(xu)Vu + Iu I x C (2.8)

b) a(xu) l-= * F x C Z

then

vu k+2 .< K(u) (11 i*k + 1*21 k+l _  (2.9)
2

If (2.8)-(2.9) holds, we shall say that 0 is H k+2-regular. Next, define for
k > 0.

a) !- k  sup{( , ) - k - 1

(2.10)

b) 1-k sup{(*,p) I[Pik - 1)

Lemma 2.2. If 0 is H k+2-regular for k < 1, there exists a constant K(u)
such that for 1 < q <r and t c J,

*10 + + < K(u)hq+kfl + g " (2.11)kc (k+ 1I t _ -q t

Proof: See [12].
We also make the assumption on (Mh } and u that there exists a constant

12 such that
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W l (J;L ) + 1IVw L L O) + ++ I
L(J;L') L'(J;LL) (J;L ) L (J;L)

L (J; H )  L(J;H CS2)) L (J;H

Sufficient conditions for the above to hold can be found in 19, 10, 18).

We next consider discrete-time Galerkin approximations. Let At > 0,
n nnN T/At e Z and to = oAt, a 6 JR. Also let yn (P nx) = (x,tn), and

n+l_ n

a) d t'
n+ l  = n

b) 6,n+l n+l n

2 n+l n+l n n-i
C) 6* ' -2,n + * (2.12)

d) 3,n+l n+l - 3*n + 3*n-I n-2

4 n+l n+l n n-i n-2 n-3
e) 6 -4* + 6* -4* +'

We next define a family of extrapolated coefficient backwards differentiation multi-
step discrete time methods.

Let U : tOf....,tN } I M.h be an approximate solution of (1.1). Assume that

U are known for k < n. Then, given certain choices of parameters a, al, a 2'

and a 4 and an extrapolation UJ , we determine Un  to satisfy

((n un+1-,_U n lVX

(c(U n ) , X) + $(a(un+)Vu n , Vx)At

n1l-n[ eni 1 n+ un-i e~n-2+ ~n-2
0(g(t n+l, 6n+), X) + (c(U-n +l  

1 Una 2U +aU n, X) (2.13)
U t 'MU+2

- B(b(6n+l), VX) + 0(f(t n+ l , Un+l), X), X C

A parcicular example from this family of methods is the choice U U , 0 = 1
and si = 0, i - 1,2,3,4. This choice is the the well-known backward Euler method

with lagged coefficients which is known to have time-discretization error of order
At. Other choices of the parameters and extrapolation in the coefficients yield

2 3 4
temporal errors of order (At) ,(At) , and (At)
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We present these special choices in the following table.

Table 1: Selected Multistep Methods

Extrapolation a I 2 a a Time-discretization
+2 Error

Un+l- SUn+l 1 0 0 0 0 At
U- +l- -un +1 2/3 1/3 -1/3 0 0 (At)

un+I63Un + l 6/11 7/11 -9/11 2/11 0 (At) 3

u+-4U 12/25 23/25 -36/25 (At)

We note that by extrapolating the coefficients in (2.13), we have reduced each of

the above problems to the solution of a different set of linear equations at each
time step.

III. Iterative Stabilization Procedures. In this section we consider effi-
cient methods for solving the linear equations arising from (2.13). We note that
the coefficient matrices from (2.13) change with each time step. In order to avoid
the factorization of different matrices at each time step to solve the different
systems of linear equations, we shall present an iterative method for approximating
their solution to sufficient accuracy.

Let {'P I= be a basis for Mh  and let Um  from (2.13) be written as

1 . . (3.1)
i-1 x 1

Using (3.1), (2.13) can be written as

Ln( ) ( n~l n) a[cn(o{ [ i n AtF1 + (3.2)

- Fn(M

where the matrices and vectors are of the form
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U fl n
a) L ( ) = C' + AtA n

M
b) Cn(S) = ((c( E k. #).,i 1

k=lkk

1(3.3)

c) An() = ((a( I E.,
k=l k P)Vtj' 'I

n n ~ n
d) F (Q = ((g(tn~l, o k (b( P V -P.

1 k=l k=lkk

+(tn+ 1, M n )

k=1

for i, j = 1,...,M.

Instead of solving (3.2) exactly, we shall approximate its solution by using
0

an iterative procedure which has been preconditioned by LO , the associated matri)
with coefficients evaluated at t = 0, for each time step. The preconditioning

process eliminates the need for factoring new matrices at each time step, while thE

iterative procedure stabilizes the resulting problem. The stabilization process rE

quires iteration only until a predetermined norm reduction is achieved.

Denote by

Vm Yk Wk(3.4)
k=l

the approximation to UP produced by only approximately solving (3.2). An itera-

tive procedure for obtaining the necessary V starting values using the iterative
procedure described here will appear in 131. We assume such a starting procedure

has been used to obtain sufficiently accurate (see (4.7)) starting values. Thus

assume V0 , ... ,Vn have been determined. We shall determine the M-dimensional
n+1 vn+1)

vector y (and thus V ) using a preconditioned iterative method to approxi-

mate Cn+1 from (3.2). As an initial guess for &n+1 - &n we shall extrapolate
from previously determined values. Specifically, for a particular method having

time-truncation error (At) , we shall use as the initialization for our iterative
procedure

X0 (,n+l - 7n) _ 8v+1 yn+l , (3.5)

th
where the M backward difference operator ? is defined in (2.12) for

i
m - 1,...,4. Since we are using previously determined y in the coefficient

n+l
matrices to determine y , our errors accumulate.
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In order to estimate the cumulative error, we first consider the single step

error. We define y to satisfy

L n(y)( Yn+l _ y n F n(y) , n > p . (3.6)

We can use any preconditioned iterative method which yields norm reductions of the
form

ILn(Y)1/2 (Y n+1 yn+l)11 <Pn 1 Ln(Y) l/2 (6n+l - yn+l + 6 p+ Yn+l) (3.7)

where 0 < pn < 1 and the subscript e denotes the Euclidean norm of the vector.

A specific iterative procedure for obtaining (3.7) is the preconditioned conjugate
gradient method analyzed in [1, 9, 10].

Let

a)1P12 n ~
a) li 2 - (c( n+ )P,€')

nC

b) 10 0I = (a(vn1 )V,V) (3.8)n
a

C) 1 11II + (At) n11 I

c a

be special norms and seminorms. Note that N- II and II n II are uniformly equi-n n
c a

valent to 1111 and HV-11, respectively. Then letting

M
yj P. V (3.9)

i=1

with Ym defined in (3.6), we see that nl satisfies

(c(V n~l )  ,X) + 8(a(Vn+Il VnIV,VX) + 8(b(vn+ll,VX)at (3.10)

At ih -

Also using (3.8), our single-step error (3.7) becomes

llln~lvnllln I - III d V5 llln. n >_ + 1 . (3.11)

We note that as in 16, 12], there is a Q depending upon bounds for the coeffi-
cients, such that
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a) p < 2Q , with 0 < Q < 1, and

n Pn (3.12)

b) - p' < nt, n > 1
1+p n- -

n

IV. A Priori Error Estimates. In this section we develop a priori bounds for
n n

the errors V - u for the procedures defined in (3.10) using the base schemes de-
fince in (2.13). The techniques for treating the nonlinearities in the coefficients
of a, b, and f are tedious and appear in 17, 9, 12]. Therefore, for simplicity
of exposition, we shall consider the simplified problem

a) c(x,t) - V • [a(x,t)Vu] = 0 , x E 0, t E J

b) a(x,t) a= g(x,t,u) , x E M2, t C J , (4.1)

c) u(x,O) = u 0x) , x E

We can thus examine the higher-order efficient time-stepping procedures without the
added complexity of nonlinearities, except in the Neumann boundary condition.

Also, for simplicity, we shall present the details for the particular method

whose choice of parameters yields time-discretization error of order (At) where
= 3. Proofs of stability and convergence for the other methods follow similarly

and can be derived from the proofs of similar problems which appear in 171.

For U = 3, the base approximation scheme for (4.1) from (2.13) can be writ-
ten as

n+l 6n+l
(C 1 au ,X) + 11 At (an 1 VU ,VX)
n+l 11 n- (4.2)

6 611At(g(tn+l'un+l ),X) + (Cn+ I[ I  
U n - 2 Sun-I] ' ) ' X C

11 ntgt+, X c 1 11 11 X E

......n+l n+l fin+l n un-l un-2.

where C 1  c(x,t n  ), a 4 1  a,' ->, and =3Un  + Let

nn =u n - Wn  and V =V n _ w -We know from Lemi_ 2.1 that W is a function in
Mh  which is sufficiently close to u. We next estimate how close V and W are.

From (2.6), (4.1), and (4.2), we obtain the following error equation
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- n+l 6At n+l(c X) + A-(a VC 'VX)

nl11 11I 11

" &t(C Idtnn+l- 7 n 2 n-i+A~c jd -- dtn +- din ],X)]
n+l t H1 t 11- t

(Cn+ I ± _t Lut un+l + _L 6
u n _ 2 un-l]'X)

n-fl 11 at11 1T
(4.3)

" 1,t (g(tn+l,Vn + l ) -g(tn+ ,w n + ),X)

" [(Cn+ (Vn' 1 7,n+ 1) ,X) + 1- At (an V (vn,+ - nTl) ,VX) I

+c 12 nnn
n+l 11 111

(X) +T 4  (X), X, -

Term T1  enters because we are comparing V to W instead of directly to u.
Term T measures how well the multistep scheme approximates i and term T

2 ~at3
arises from the nonlinearity of g. Finally, the single-step error made by using
the iterative procedure to approximately solve the linear equations appears in term
T4 '

We shall first present a few lemmas which will help separate the various parts
of our analysis. First we note that the parameters B(u) and C1.(1), i - 1,...,4,

are chosen in (2.13) to insure the following consistency result.

Lemma 4.1. For each V = 1,2,3,4, the choice of parameters S() and ai(u),
i - 1,2,3,4 given in Table 1 yields

un+l un+1  4 "~- K -0A) +1

Ila- IW t - ci (11)u n  ] 1< K (At) (4.4)
i=1

We next consider the following lemma which will provide the estimates for the
basic stability of our methods.

Lemma 4.2. Assume that Zn  satisfies, for m > 2,

E.-1
I I(Cl Zn+1 X) + ±At(a n+ lVX))
n=m (4.5)

Z-1 7 n 2 6 n-I X+1'I rc (n [ 6z i- 1.) + ,X)],
n=m
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Then there exist constants K4 , K5  and K6  such that setting X Z n + 1 yields

lIZZ112 + t [l16zn+l112 + 1 n+l1 At ]
- a n+ (4.6)

nxn-2 ~11 + I At + I (Fn,~ ~lInIm-2 nm-2 n=m

setting X = 6Zn+ 1 yields

III 6Zn + 1111 + AtIZ 112 < K [Atl1ze 1l

n-m n 1(4.7)

rn-i 2 2,-i 1 -
+ m I I- zn+i'11n + z 1z n+I(&t) 2 + I i (Fn+l, zn+1) (

n--m-2 n n--m-2 1nASlm.

also, setting X = (n+l) Zn+ l  yields

F X~~n+1 1I5 n ii+RAIzI] 6 nm-2 (4.8)n 2 n+l 6Z n+1

( +l z 22 n+1 + z + , )n]
nn-m a n=m

Proof: See 171.
The following version of the discrete Gronwall lenma is trivial.

Lemma 4.3. Let f > 0, 0. > 0, and y > 0. Assume that for n 1,..

n-i

andfn 

< --m f At + 7

n-1

I B at _M

Then, f < y exp M, n = m-i,...,4.

We shall assume that an efficient start-up procedure using the same precon-

ditioned iterative methods as described in Section 3 has been used to determine
initial approximations satisfying

I ii Kh (4.9)

For the description of such a start-up procedure and proof of the given estimates,
see (31.
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We next state the major result of the paper.

Theorem 4.1. Let u and U satisfy (4.1) and (4.2), respectively. Let V be the
iterative variant of U satisfying (4.9), (3.10), and (3.11) with p satisfying

(4.21) below. Let u E L2 (J;H r ) n W(J;W3 ) and either

a) T t j (,It) 2 dt < K when 9 is H -regular and h2 < CAt, or
0

b) E 2 rj;Hr)

Then there exist constants K8 (u), depending upon the norms of u, and h0 and

0 such that if r > d/2, At < min{T ,hd/6 1, and h < h0 ,

sup In _ Vni < K (U)[hr + (At) 3

n

Proof: Letting X =n+l in (4.3) with m = 3 and using (4.6), we obtain

_t 12 + I I n+l 112 + At 1 l 11
-3 a (4.10)

_K4 [ 11C3 112  L-1 ~ n l l 2 + ~ n + l 1 1  L- 4 1nI(n+I)l

+ f+ + II T + (
n=l n=3 i=l 1

Next, we see that from (2.7) and (2.11),

-IT n+( n+l K I 1 ,,n+11 ln+11 + I 1 d nn+l jJ n+lll t

3 n 30(4.11)

K9(u) h 2 r + Z1 n + l 12
weeKn= 3 n+l At,

where 9 (11ull L2 r ) + L 2 r-l We note that use of (2.7b) insteadL(JH) (JH u 2 r2

of Lemma (2.2), would have required the assumption a L (J;Hr ), a much stronger

smoothness assumption. From Lemma (4.1) we see that

IT n+l I K(u)(t6 + 1 1 I1n+l1 2  A (4.12)

n3 n=3 a

We next use (2.4) and smoothness of W to obtain the bound
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L-I £-i 2

iT3 ' (n+ )1I 
< K (J+11 + K (At)3 + 2 I 4 1 j hk' 1At

n=3 n=3 J=O (4.13)

< K(u){(At) 6 + z 1 11n+oll 2 
+ 11,n+l112 ]At} + 1 Z-1 iin+112  

At

n=l n=3 a

Using (3.8), (3.11) and (3.12) we see that

%In+l(n+l) < n+l n+

I IT 4  iy n  IIl iIln
n=3 n=3

9.-I
< P + 111 ] 4 vn+l 111 III n+l III

n=3 (4.14)

<_ . KU)P+l{ 1 1 11 1 nn~-ilni +(t4}lnlln

n=3 i=Ol [uI'~ II2At +I 8_ -1, (A).2 f

< K(u) (At) 6 + z1 n iAt + . 9II II niAt
n=3 n=3 a

+ n+l Il n+l III

1f-At II n

Noting that the multiplier in the last term on the right side of (4.14) is bounded
by (n+l)/16 usinq (3.12), we combine (4.10) - (4.14) and use (4.9) to obtain

11-I ;,, 11,, - 1,~ l1 1n l 2 At
+2 iL n+ l n t

n=3 a

< K(u) 2 r + (At) 6 + z 1 (2At] (4.15)
n=3

+K I S 112 k i (n+l)2

n=3 n=3

We note that if we can bound the last two terms on the right of (4.15), we can then
use the discrete Gronwall Lemma to obtain our result. In order to bound the next

to the last term on the right side of (4.15) we let X = 6 n+l in (4.3) and use
(4.7) to obtain

1-i 2 2  2 2
F III ,n+ll + tl K + II62111, + 1116C3112

n3 nK(4.16)
11  1 2 2.-i n

L.-1 2 J-1 4 + ~
+ Cn1l(At) 2+ I T.n~ (6cn~ )II
n=i n=3 i-1
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As in (4.11) we use (2.7) and (2.11) to obtain

IT 1 (,,n+l) I < K(u)h 2 r + I II,,n+l_,1n (4.17)

_ n
(.3 n=3

Similarly we see that

-IT 2 (2 1 < K(u) (At)6 + - n . (4.18)
n=-3 n=3

Using (2.4) we then see that

1-1 L-1 2-n+1 n+l. 1) 3,n+llSIT3  ('5 )I <K [ (kfl I + K2 (At) 3 + X 16 n+1-i) 1 I [At

n-3 n=3 j=0 (4.19)

< * [ IIdn+l III + K(u){(At) 6 + n f+1 n At + jC n+l (At) 2])
n=l n=l

Then, as (4.14), we use (3.8), (3.11), and (3.12) to obtain

, n+1 n+l. 1 6
4 n+l I n+lIIT; -w )I I "116 III J1ln6Cl lln

n3 n=3

A 1 3K O IlIsn+l-iln i + (At) 4 1 ll In+lll (4.20)

n=3 i=0

< K(u)(At)
3 + 12 P IK ni 1112

-- 1n0,J1n6 n
n=0

where K10n depends upon local upper and lower bounds for the coefficients a n

and c (see (4.21)). Then iterating on the preconditioned iterative proceduren

sufficiently often that

Pn :1 (48K 10,n)-1 =-- minfa(t) j j=n+l'n'n-l'n-2 (4.21)

48 sup[a(t) : j=n+l,n,n-l,n-2}

combining (4.16) - (4.20), and using (4.9) we see that

91 111 ,? 11112 + Ad K91 112(.2
n=n 4.22)

< K(u)Th 2 r + (At)6 + 1{II n+l 12at + 11 n+lj2(At) 2
n=3

In order to bound the last term on the right side of (4.15), we let X ( (n+1)6 n+l

and use (4.8) to obtain
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1(n+1) III 6C Iili + <~ K 6 I36tiK 11 + £1;~
n=3 n=l ( . 3n1 (4.23)

X-1 7A jj~n+jj 2 -1 4,nl+ -I22- n+l + I I ( (n+l)
n=3 a n=3 i=l1

We note that (4.9) and (4.22) can be used to bound the first term on the right side
of (4.23). We next obtain

2.-i 2-I 2
n+l n+l. Z1, n+1 ] 2 nljj l(n+l)T 1  (6 ) < K nI 11n~l + I Ild t nn -J11U ~i (n+l) At

n=3 n=3 j=0 (4.24)

< 1 (n+) n+l112 + K :Ii n+l 12At + K 1idTi n+ 112(n+l)At16 16nt -
n=3 n=3 nl

If u C L2 (J;H r ), we have from (2.7) that

I lln n+l 2At < K(u)h 2 r  
(4.25)

n=1

Then, using (2.11) we have, if h2 < At,

12

£ dt1n+l - l aun+l 2 2r+2
lid 2_l 1 (n+l)At < K + I3h (n+l)At

n -1 n=l

(4.26)
T u2

K(f t["u(*,t) 12 + iI U(.,t) b dt)hr

0r 
at

Note that h2 < At is not a strong restriction for these high order time-stepping
methods. The constant on the right of (4.26) determines the smoothness assumptions

we need on u and l- for this argument. We note that for linear, time-dependent
at

problems the assumption

tItll12t) !I2dt < K (4.27)

0
au L2 r-

is roughly equivalent to - E L (J;H r - l ), the assumption needed for (4.11), and
a au 2 r

much weaker than the assumption - c L (J;H r) which has been made in [7, 11, 171

for similar estimates. Using (4.4) we see that

Irn ccn+n (l) 1 I I I On+l) ,n+l 2 + K(u) (At)6  (4.28)2n16 n=3n
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We next consider the T3  term from (4.23). Note that

2,-1 n-il

T3  ((n+l) ,n'l)I < 1 (;g 6(n+l)At
n=3 

n=3

+ 6 + 1 3u + )(n+l)Atl + II + 1+ (4.29)

n=3 n=3

T 5 + T6 + T7

T6  can be bounded, using (2.4), as follows

1-i 2

T <K I I 16,n+ljl Idn+lI(n+l)At
n=3 j=O

(4.30)
< _- 1 1 6,n+ 112 (n+i) + K 111,.n+l n+l) (At) 2

- 16 K n

Then using a technical summation by parts argument and estimates like those used in
(4. 30) we can obtain (see 112, p. 27-291 for details)

T 5 +T 7 - 1 6 il a n+lAtl + 1n~l a

+ K{ I I, + At] lln, )At]KelllI 1,,t A ,t)6  XIZ,Ilnilt .n t],llOnlll2 -,-II~n 2l. (n+"it (4.31)
n~l L

+ K 2~l 1;,2,tt

As in (4.20), we see that

£-1 £n-1 3

I IT ((n+l)C I<. Kl p ll{ 11 n+l-ill,_ + (At) 4 I6ll 11n+lI,(n+l)
n=3 n3 (4.32)

6 -1 l2
K. K(u) (At)6 + 4KC10 ,n I pOP Klo nIII 6 nllln (n+l)

Next, by iterating sufficiently often to satisfy (4.21), combining (4.23) - (4.32),
and using (4.9), we obtain
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-l2 +12 4 X- 11 n l 2
n i n+lA t

n=l n=3 a

+ K(u) [h 2r + (At)6I + KI 2
11 t 12 At (4.33)

" K(U) 1{1 dn+l i 2 
+ It1n+l 11 (n+l)At}l 6Cnln2 n + At}

n=l L

Now adding inequalities (4.15) and (4.33) to K4  times inequality (4.22) and sim-
plifying we obtain

I1C,112 + I1C,112tAt + SC{I l60n'iIICn+l) + 11n+l At}
n=3 a

< K(u){h 2 r + (At)6I + 4K 11 CZ112At (4.34)

+ I , n11 + n+1 n 211 +K(+ 1 ..tj 1n + At}

We next indicate how to treat the term multiplied by 4K on the right side of
(4.34). Note that for some El > 12

jI n+l l (n+l)At - n At n+l At (4.35)

< E l( n +l)11 ,n+lj2 + JI ni 2At- 1

we sum (4.35) from n = 3 to n = I - 1, multiply the results by 4K2 + -,1 and

add the final inequality to (4.34). Then take E < (8K12 + 1) Next, we make
the induction hypothesis that

in n12 < 1 (4.36)

n--1 L

Then it follows from (4.34) - (4.36) and Lemma 4.3 that

~II11,n Irn < 2 exp((l.*T)R(u)1R(u)[h 2r + (At) 6 (4.37)
n=l

It then follows from (4.37) and the inverse hypothesis (2.3.c) that

1-1 1 , 11 2 n < K h-d L-1 1 ,n11 2n < Kh -d[h 2r + (At) 6] (4.38)

n=l L 0 nf1

We note that the right hand side of (4.38) tends to zero as h tends to zero if
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d
d h

r > and At < (4.39)

which justifies the induction hypothesis. Since this implies

1l 112 I+ 11 At Kth2r + (At , (4.40)

the result follows from (4.40), Lemma 2.1, and the triangle inequality.

We note that similar theorems hold for the original nonlinear problem and for
the other various multistep methods presented. Also, if Q is a rectangle, rec-
tangular solid, or unions of these regions, alternating direction variants of the
multistep methods presented here are even more computationally efficient. See
14, 51 for these results.

V. Computational Considerations. In this section we shall consider some rough
operation counts to estimate the computational complexity of the methods presented
here. We shall see that the preconditioned iterative methods allow us to obtain
very nearly optimal order work estimates and are thus very efficient computation-
ally.

We shall give estimates for d = 2. The procedures of setting up and factoring

requires O(M ) operations, where M = dim Mh . The solution of (3.2), given

the factorization, requires O(M log M) operations. Such bounds have been shown
to be minimal. If we conjecture the validity of the above estimates for our problem

and refactor Ln and solve (3.2) at each time step, the total amount of work done
is

O(N{M 3/ 2 + M log M}) = O(NM)3 / 2

where N is the total number of time steps (N P (At)1). Note that the work of
factorization dominates the estimate.

Using the preconditioned iterative procedure presented here, only the precon-
0ditioner, L , must be factored. Let K be the number of iterations needed to

achieve the necessary norm reductions in (3.11) and (3.12). We note that K n can

be bounded by a fixed constant K which is independent of h, n, and At. Using
this method the total work done is

O(N3/ 2 + NMc log M) . (5.2)

Since balancing the spatial and temporal errors yields

N *8 (At) - _1 f h V .f O (Mr 1 2 -p)- ri

we note that for r > V, the work of solving dominates the estimate, while for
r < U the amount of-work of solving is even less than the work to factor one
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matrix, a necessary piece of work. Clearly, in any case, (5.2) is much preferable
to (5.1). Also, since the total number of unknowns in the problem is

O(NM)

(5.2) represents a nearly optimal order work estimate when the work is at least as
much as factoring one matrix. If alternating direction variants of these methods
can be used, the log M term can be removed from (5.2) and optimal order work esti-
mates are obtained (see [4, 5]).

It is computationally wasteful to iterate exactly K times at each time step
in order to achieve the pessimistic bounds on p given in (4.21). Instead, one

can monitor the norm reduction actually produced at each time step of the iteration
and stop iterating when sufficient norm reduction is achieved. Additional stopping
criteria can be imposed in this monitoring process. See 191 for a discussion of
stopping criteria for related methods.
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INTEGRAL BOUNDS FOR THE STRAIN ENERGY IN TERMS OF SURFACE TRACTIONS
OR DISPLACEMENTS AND BODY FORCES IN FINITE ELASTOSTATICS

Joseph J. Roseman
Department of Mathematical Sciences

Tel-Aviv University

ABSTRACT. A number of results are discussed in which a bound for the strain

energy is obtained in terms of intigral norms of the given surface data and body

forces in the context of finite elasticity, where the displacement gradients are

assumed to be small, but not infinitesimal.

I. INTRODUCTION. We consider a homogeneous, isotropic elastic body which

occupies a domain DR9 with boundary P.R' in an unstressed undeformed state and which

is mapped smoothly, one to one, onto a domain V, with boundary aV, under the action

of surface tractions and body forces. Let x = (xI , x 21 x3 ) be a point in DR which

is mapped onto a point y = (yI' y 2 ' Y3) in D. The displacement vector u is defined

as

u = y - x, (1)

and, since the mapping is assumed to be one to one, u may be regarded as a function

of either x or y. The Jacobian matrix of the transformation pij is given by

Pij = 6ij + uij ' (2)

The author was on a leave of absence at Georgia Institute of Technology, Mathemat-
ics Department, at the time of the Conference. This manuscript was prepared

while visiting at Georgia Tech and at the University of DelawareMathematics De-
partment. The author's participation in the conference was supported by Georgia
Tech. and the U.S. Army Math. Research Center in Madison, Wisconsin.

tTensor notation is used throughout this paper; all indices may take on the values

1, 2, and 3 and a repeated index in any term is summed over all values of the
index. Differentiation with respect to xk is denoted by a comma, as
u aeu/axk
i,k i k
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the metric tensor, gik, by

gik = Pji Pjk = g ' (3)

and the strain matrix elk is defined as

elk 1/2 Qi- 6ik "  (4)

It is assumed also that the body is hyperelastic, i.e., there exists a posi-

tive strain energy density function W = W(eik) with units of energy/volume which

describes the energy in any subdomain of V in terms of its preimage in DR (cf.[ 1],

[ 2]).

The equations of linear elasticity are obtained by formally considering the

displacement gradient u ik to be infinitesimally small so that quadratic and higher

order terms are assumed to be negligable when compared with first order terms.

In the first (displacement) boundary value problem of elastostatics, the

boundary displacements and internal body forces are considered to be given data.

In the second (traction) boundary value problem the boundary stresses and internal

body forces are given. The mixed problem has displacement data on part of the

boundary and tractions on the complement. The question of whether the boundary

stresses and body forces refer to the deformed or undeformed domain is important in

nonlinear elasticity; in linear elasticity the question does not arise since the

di" rence is considered to be of negligably small order.

Integral bounds for the strain energy in terms of the given surface data and

body forces have been obtained by Bramble and Payne [3], [4], Dou [ 5], and Gutierrez

[ 6] in the context of linear elasticity. Here we shall discuss some recent work in

which similar bounds are obtained in the context of nonlinear finite elasticity

where the displacement gradients are assumed to be sufficiently small relative to

the size and geometry of the domain, but not infinitesimal. The various results

are obtained by a variety of different techniques and approaches.

In Section II, the strain energy density function is assumed to satisfy the

hypotheses of Villagio's inequality [ 7], which states that

WdS k C dQ (5a)

au-ik Ui,k ik A(k

DR DVR

-448-

Wo 

A L 
• i



where

Cik = 1/2 (ui,k + Uk,i) (5b)

and k is a positive constant which depends upon the domain and the material proper-

ties. This assumption puts some restrictions on the class of solids (see [ 7]).

The Villagio assumption is not used in Sections III and IV. There the only

assumption on W(e i) is that it be of the form

W = Veik elk + 1/2 Xe ii ekk + 0(l )  (6)

where O(1e13 ) is a smooth term of order of magnitude le1 3 for sufficiently small

jel and X and P are positive material constants.

II. THE FIRST BOUNDARY VALUE PROBLEM WITH ZERO BOUNDARY DISPLACEMENT. Aron

and Roseman [ 8] studied the first B.V.P. for the case where the boundary displace-

ments are everywhere zero. When the mass density in the reference state is constant,

the displacement vector U satisfies the Navier equation

a f - _F (U) = 1,(Y (7)
axj aui ,kJ =aF u)--Y) ,(7

where F is the body force in R (force/volume) and V is the potential of the body

force (In [ 8], the density is actually allowed to be variable; the units of Fi and

W in [ 83 are force/mass and energy/mass, respectively). If the validity of

Villagio's inequality (5) is assumed, then it is easy to show that

Iu 1 -1 I1 F(u)1 , (8)

when u is a classical smooth solution of the problem and the indicated norm is the

L2 integral norm over D . However, in [8], (8) is derived for the more general

case where u is a weak solution with the aid of a theorem of Ekeland [ 9]. It is

shown that for every e>O, there exists a vector function u such that ifE

J(U) = W(eik) + V(y)] &2 (9)

iki
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for all u c M = {u/u c C (P ) and u = 0 on aV }' then

a) II DJ (uE) II E (10)

where D is the Gateau derivative of the functional J and II 1" is the norm de-
fined by

rdIII DJ~u >1 I*Lau,k jU = Uv i 'k -F(C i -d

=( sup fR ' (11)JVR, i _fd

VUi 0-

and

b) IIUE - I F(uE ) [ (12)

If it is also assumed that the inequality

aW
Wek) < uk u EM, U 0 (13)

is valid (see [10]),then one may obtain

< ~ o5- 1u)11 2 (14)

W(e ) dO k F(u) J
E

for every E > 0 and, by allowing c + 0, we obtain the inequality even in the sense

of weak solutions.

III. THE FIRST BOUNDARY VALUE PROBLEM WITH ZERO BODY FORCE. Breuer and

Roseman Ell] considered the first B.VP. when body forces are absent and boundary

displacements are prescribed. The displacement vector u satisfies

a 3W 0 in D (15)

3k I i,ki]

and

ui U1 (Ei2 on r c 3DR (16a)
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u =0 on VR - F, (16b)

the and 2 being suitable orthogonal surface coordinates chosen such that do,

the element of surface area on r, is given by do = d& 1 d& 2 .

The approach used in [11] is based on a minimum principle of Fritz John [ 12]

in finite elastostatics which is described below. Breuer and Roseman [ 11] Pove

the following:

Theorem: Consider an isotropic homogeneous elastic body, which in izs unde-

formed state occupies DR c E3 and which is mapped onto D in accordance with (15)

and (16). The domain DR  is of bounded eccentricity in the sense of John [12] and

has sufficient regularity for the application of the divergence theorem. The

patron r c aDR has two continuous derivatives; there exists an h0 such that ho is

less than half the minimum radius of curvature of T and at every point of r it is

possible to place a tangent sphere of radius h 0 whose interior is contained in DR '

Then there exists an c > 0, depending on DR and W, such that if the maximum

strain in D is less than c, and if the boundary displacements U. satisfy

ui c C2(r), (17a)

Ui, a, 
2Ui  all vanish at 3r, (17b)

ju ll < cop (17c)

lauil < E (17d)

where aU i and 82U i represent any first and second derivatives with respect to the

surface coordinates and 2 of (16), then

U 22 B2 2

E 5B h __ 11 1 r 3 2 h ii(8

where E is the total strain energy in D, 11 1r is the L2 integral norm over r,

and B 1 and B2 depend only upon the specific strain energy density function W.

Proof: In C 12], John proved for a wide class of domains and energy density

functions that if K is the subset of vector functions in C 2(D R ) nC(V R ) which satis-

fy the given boundary data and produce sufficiently small strain, then the solution

of the Navier equation (15) is the one and only function in K for which the energy
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functional is a minimum. It is assumed here that a solution u exists and, with

the assumptions made above on U., a vector V c K is constructed. The quantity
1

E(v), the energy associated with the vector V, is computed and, by John's minimum

principle,- gives an upper bound for E(u).

We aote that the constants in (18) dependon-ly-per--the gomtry and size of

that portion of the boundary which contains the--_nZon--z sur-face data.

iv. THE SECOND BOITNT)ARY VALUE PROBLE4. The second B.V.P. in finite elasto-

statics is considered 1y Breuer and Roseman in [13], who obtain a result similar to

that obtained by Bramble and Payne [ 3] in the context of linear elasticity. Breuer

and R3seman assume here that the body is elastic, isotropic, and homogeneous, and

that its reference domain DR is convex. The displacement gradient is assumed to

satisfy an a priori bound of the form

ui 32(19)

where d and D are the inner and outer diameters of VR respectively and 6 is a suf-

ficiently small universal constant. It is proved that

E < B dD D [ I I l (20)

where

i) E is the strain energy in V,

ii) I IFII is the L2 integral norm of the body forces in D,

iii) I JT1 is the L2 integral norm of the surface tractions over DD,

iv) q is a sufficiently large positive universal constant, and

v) B is a constant which depends only the physical properties of the body.

The bound (20) was obtained by a combination of the linear techniques of

Bramble and Payne [3], the work of F. John ([141,[15]) on the relation between

rotation and strain in nonlinear elasticity, and by a priori estimate techniques.

In a forthcoming paper [ 16], the same authors consider the second B.V.P. when

the body forces are zero and the surface tractions are zero on all but a connected

subdomain r of aV R . By an extension of the arguments used in[13], they prove

that
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m2

E ! B h IITIIr (21)

where h and H are the inner and outer diameters of a closed subregion of VR whose

boundary includes r, ITIIF is the L2 integral norm of the given tractions on F and

B is a constant which depends only upon the material.

The bound (21) does not depend on the total size of the bcdy and is, therefore,

the type of bound which is desired when one wishes to consider unbounded domains

as limiting cases of large finite domains.

Finally, we remark that in the context of linear elasticity the arguments in

[13] and [16] will go through without the requirement that DR be convex.
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A FINITE-DIFFERENCE APPROACH TO AXISYMMETRIC PLANE-STRAIN PROBLEMS
BEYOND THE ELASTIC LIMIT

P. C. T. Chen
U. S. Army Armament Research and Development Command

Benet Weapons Laboratory, LCWSL
Watervliet, NY 12189

ABSTRACT. A new finite-difference approach has been developed for
solving the axisymmetric plane-strain problems subjected to internal or
external pressure beyond the elastic limit. The theory used in this
paper includes the Prandtl-Reuss flow rules, von Mises' yield criterion
and the effective stress-strain data of a material. The stresses and
strains in all principal directions can be computed as functions of
loading history. The numerical scheme is stable for ideally-plastic
as well as strain-hardening materials. The desired accuracy can be
achieved by reducing the grid sizes and/or load increments.

I. INTRODUCTION. Based on a detailed study reported in [1], the
best material model for gun tubes under high pressure operation is an
elastic-plastic material which obeys the Mises yield criterion and the
Prandtl-Reuss incremental stress-strain relation. A literature survey
indicates that no closed form solution exists even for the axisymmetric
plane strain problems. And, in such situations, one has to rely on
numerical methods. Both the finite-difference method [2,3] and the
finite-element method [4,5] have been used to solve the elastoplastic
problem considered here. The finite-element method is more powerful
and can be used to solve more general elastoplastic problems. Since
the displacement function is assumed and the programming is complicated,
the accuracy of the finite element approach has to be verified. This
is usually done by comparing with more rigorous solutions to simpler
problems. For the problem considered here, rigorous solutions based
on the finite-difference method were obtained by Hodge and White [2]
for ideally-plastic materials, and by Chu [3] for strain-hardening
materials.

In the present paper, a new finite-difference approach is developed
for solving the axisymmetric plane strain problems subjected to internal
or external pressure beyond the elastic limit. An incremental approach
is used and the numerical scheme is stable for ideally-plastic as well
as strain-hardening materials. The desired accuracy has been achieved
by reducing the grid sizes and load increments.
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II. BASIC EQUATIONS. Assuming small strain and no body forces in
the axisymmetric state of plane strain, the radial and tangential stresses,
or and 0, must satisfy the equilibrium equation,

r(ar/ar) = 06 - Cr ; (1)

and the corresponding strains, Er and c0, are given in terms of the
radial displacement, u, by

Er = au/Br , £6 
= u/r. (2)

It follows that the strains must satisfy the equation of compatibility

r(ace /Dr) = Er - C0 - (3)

Whereas the differential equations (1), (2) and (3) hold throughout the
tube regardless of the material properties, the constitution equations
assume various forms according to the adopted form of yield function,
hardening rule, total or incremental theory of plasticity. In the
present paper, the material is assumed to be elastic-plastic, obeying
Mises' yield criterion, Prandtl-Reuss flow theory and isotropic harden-
ing law. The complete stress-strain relations are [6]:

dei ' = dai'/2G + (3/2)ai'da/(aH') (4)

do > 0 for i = r,O,z

dc m = E-l(1-(v)dam (S)

where E, v Young's modulus, Poisson's ratio, respectively,

2G = E/(l+v)

Cm = (cr+EO+Ez)/3 , ' = Ci-Cm '

am = (0r+GO+az)/3  , ail = ai-o m , (6)

0 = (l/2 )[(ar-a0) 2 + (a0-oz)
2 + (az -r)2] 1/2 > 00

and ao is the yield stress in simple tension or compression. For a
strain hardening material, H' is the slope of the effective stress/
plastic strain curve

0y H(fdcp) . (7)
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For an ideally-plastic material (1i'=O), the quantity (3/2)da/(oH') is to
be replaced by dX, a positive factor of proportionality. When a < co or
da < 0, the state of stress is elastic and the second term in equation
(4) disappears. Following Yamada et al [7], equations (4) and (5) can
be rewritten in an incremental form

dai = dijdc j for i,j = r,O,z

and

dij/2G = v/(l-2v) + 6ij - .i'aj'/S , (8)

where

S - 2 = + I H,/G)Ca2  (9)
3 3

and 6ij is the Kronecker delta.

This form was used in the finite-element formulation for solving elastic-
plastic thick-walled tube problems [5]. In the following section, the
incremental stress-strain matrix will be used in the finite difference
formulation.

I1. FINITE-DIFFERENCE FORULATION. Consider a thick-walled
cylinder of inner radius a and external radius b. The tube is subjected
to inner pressure p and/or external pressure q. The elastic solution for

this problem is well-known and the pressure p* or q* required to cause
initial yielding can be determined by using the Mises' yield criterion.
For pressure beyond the elastic limit, an incremental approach of the
finite-difference formulation is used. The analysis starts with the
applied pressure p or q and the loading path is divided into m incre-
ments with

Ap = (p-p*)/m , Aq = (q-q*)/m . (10)

The cross section of the tube is divided into n rings with

rl=a,r 2,...,rk=P,...,rn+l=b, (11)

where p is the radius of the elastic-plastic interface. At the beginning
of each increment of loading, the distribution of displacements, strains
and stresses are assumed to be known and we want to determine Au, Acr,
Ace, Aar, Aae, Aoz at all grid points. Since the incremental stresses
are related to the incremental strains by the incremental form (8) and
Au = rAce, there exists only two unknowns at each station that have to
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be determined for each increment of loading. The unknown variables in
the present formulation are (Ace)i (Aer)i, for i = 1,2,...n,n+l.

The equation of equilibrium (1) and the equation of compatibility
(3) are valid for both the elastic and the plastic regions of a thick-
walled tube. The finite-difference forms of these two equations at
i = 1,...,n are given in [3] by

(ri+,-2ri) (Aar)i - (ri+l-ri) (Aa0)i + ri(Aar)i+ I

M (r il-ri) (a r ), - ri[(ar)i 1 - (Cr) i (12)

for the equation of equilibrium, and

(ri+l-2ri) (A) i - (ri+l-ri)(Acr)i + ri(Ace)i+l

= (ri+l-ri)(Cr-c)i - ri[(C0)i+, - (ce)i] (13)

for the equation of compatibility.

With the aid of the incremental stress-strain relations (8), equation (12)
can be rewritten as

[(ri+l-2ri) (d12)4 + (-ri+lri) (d2 2)i] (A) i

+ [(r i~l- 2ri) (d11)i + (-ri+l+ri) (d 21) i ] (Ar)i

+ ri(d12)4 1(Ae) i 1 
+ ri(dll)i 1(A*r)i 1

= (rifl-ri)(ae-ar) i - ri[(r)i - (ar).] . (14)

The boundary conditions for the problem are

Aar(a,t) = -Ap , AaT(bt) =-Aq (15)

Using the incremental relations (8), we rewrite (15) as

(d*12)l(AC0)1 + (d1 )l(Acr)1 = -Ap (16)

and
(dl2)n+l(AE6 )n+I + (dll)n+l(Ar)n+l -Aq (17)
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Now we can form a system of 2(n+l) equations for solving 2(n+l) unknowns,
(Ace) i , (Aer)i, for i = 1,2,...,n,n+l. Equations (16) and (17) are
taken as the first and last equations, respectively, and the other 2n
equations are set up at i = 1,2,...,n using (13) and (14). The final
system is an unsymmetric band matrix with the nonzero terms clustered
about the main diagonal, two below and one above. In the computer
program which was developed, the Gaussian elimination method was used
to solve these equations. All calculations were carried out on IBM 360/
Model 44 with double precision to reduce round-off errors.

IV. NUMERICAL RESULTS, The axisymmetric plane-strain problems
subjected to internal pressure p and external pressure q beyond the
elastic limit were solved. The numerical results were based on the
following parameters: b/a = 2, v = 0.3, HI' = 0 or E/19. Various
values of m and n were used to test the convergence of the numerical
solution. The incremental loadings were applied until the fully plastic
state was reached. The values for p or q corresponding to this final
state were denoted by p** or q**. It was found that the results
converge by increasing m and/or n. To achieve 1% accuracy in p** for
an ideally-plastic tube with n=50, we shall have m > 200. The results
shown in Figures 1 to S were based on n=100 and m=200. Figure I shows
the relations between internal pressure p, external pressure q and
elastic-plastic boundary p in an elastic-perfectly plastic tube.
Figure 2 shows the bore radial and tangential strains as functions of
internal pressure p in an ideally-plastic as well as a strain hardening
tube. Figure 3 shows the distributions of radial, tangential and axial
stress components in a partially-plastic tube subjected to internal
pressure. The dotted curves correspond to initial yielding and the
solid curves correspond to the case when half of the tube is plastic.
For an ideally-plastic tube subjected to external pressure q, the
results were presented graphically in Figures 1, 4 and 5.
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DEVELOPMENTS IN ELASTIC-PLASTIC FINITE ELEMENT ANALYSIS

Dennis M. Tracey and Colin E. Freese

Mechanics and Engineering Laboratory
Army Materials and Mechanics Research Center

Watertown, Massachusetts 02172

ABSTRACT. The dependence of a solution upon load path discretization

is an important consideration in incremental finite elenent analysis. This

issue will be addressed in the context of elastic-plastic finite element

analysis using the tangent modulus method. A variable load step approach

has been developed which successfully discretizes a given load path during

the course of the numerical solution by restricting the structural stiffnes,5

approximation at each load step. It produces a set of incremental solutions

which are consistently spaced along the load path, as opposed to the -urbitr-

ary spacing that often results with approaches requiring a priori discretiza-

tion. Example solutions demonstrate the accuracy and efficiency benefits

derived from th. variable load step approach.

INTRODUCTION. We are concerned here with elastic-plastic analysis of

material bodies which are governed by the Prandtl-Reuss constitutive rela-

tionships. These relationships have an incremental form; increments of

stress are related to increments of strain in a manner dependent upon the

current stress state and the history of plastic deformation. Hence we

concern ourselves with incremental loading finite element formulations

which trace the solution history stepwise along the loading path. In

particular in this paper, we are concerned with the solution error which

is associated with load path discretization. and we restrict attention to

this issue for tangent modulus formulations.

Here the view is taken that load path discretization can best be

accomplished during the course of the numerical solution by employing a

constraint condition which restricts the level of structural stiffness

approximation at each load step. In contradistinction, the usual formula-

tion in incremental analysis requires the analyst to specify the step sizes,
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even though in general there is no basis for doing so. In our approach

step size is treated as variable at each stage of loading, and is deter-

mined along with the usual nodal variables.

We employ a constraint which regulates a field variable known to

strongly influence the structural stiffness approximation. Regardless

of its form, in the assumed displacement finite element method, the

constraint can be represented as

g(AIJ.) = 0 (1)

where AU.i is the nodal displacement increment vector for the step labeled

i. It is convenient to discuss the constraint in the general form; as

will become clear it allows discussion of the approach in the broad sense

for the general stepwise nonlinear tangent modulus formulation. In ap-

plication we have concentrated on non-hardening plasticity and have chosen

to constrain the yield surface deviatoric stress change in a step. Before

discussing our application, however, we will elaborate on the variable load

step approach as it would apply to an elementary stepwise linear tangent

modulus formulation, one which forms the stiffness matrix K on the basis of

the initial state alone.

We consider discretization of a proportional loading segment of the

load path having a net load change given by the vector P. The state data

sufficient to establish K at the beginning of the segment is assumed known.

The governing equilibrium equation can be written as

K AU. = A. P (2)

where A.i is the undetermined step size scalar. Since K is constant, this

is a straightforward problem; an arbitrary value A.i is chosen, equation (2)

is solved for AU.i, and thereupon a scale factor is found so that equation

(1) is satisfied, and the scaled AU.i, A. pair constitute the solution for

the step. Actually, early elastic-plastic formulations 1'2took this form,

with the constraint limiting the spread of the elastic-plastic boundary.
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We will discuss the algorithm developed for formulations which employ

stepwise average stiffness matrices defined in terms of the unknown AU,

and thus have nonlinear equilibrium equations of the form

K(AU. AU. X. P (3)

The elastic-plastic formulation used in our application has the above

stepwise nonlinear form. This results from the averaging of constitutive

matrices for p:ints yielding during a step 3, and the use of secant approxi-
mations to the Mises yield surface 4 for satisfaction of the yield criterion

at the end of a step.

CONSTRAINT CONDITION FOR ELASTIC-PLASTIC PROBLEMS. In the non-hardening

elastic-plastic problem, the structural stiffness changes both as a result of

elastic-plastic boundary movement and plastic flow direction changes within

the plastic zone. We have commented on formulations 12which properly trace

boundary motion by a posteriori scaling of load to have yielding occur

element by element. Actually, for these formulations there is also corrective

reanalysis necessary for consistency of the load/unload decision made for

stress states satisfying the yield criterion. Alternately, the boundary

movement involving an arbitrary number of grid points can be approximately

accommodated by treating the movement as part of the problem and thus solving

a nonlinear problem at each step. This is the character of the formulation
3

proposed by Marcal and King , a formulation which allows arbitrary step size
by employing average constitutive matrices for "transition" points. We have

adopted this averaging scheme in the formulation used for our test problems.

Mnother nonlinear aspect of our numerical formulation follows from use of

the Rice and Tracey 4average flow rule procedure which uses (undetermined)

secant approximations to the yield surface for points undergoing plastic flow.

Separately or combined, these schemes render the elastic-plastic problem non-

linear with an equilibrium equation of the form (3). Although these averaging

methods provide a solution which is consistent with the basic constitutive

requirements, the solution nevertheless is approximate - there is load path
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discretization dependency. Hence we consider the issues involved in regu-

lating this approximation.

We first consider the changing elastic-plastic boundary and the ap-

proximate local stiffnesses of elements involved. The issue is treated

relative to the changes of state of points representing the elements, and

again we are here allowing for arbitrary sized load steps. In general,

a point can experience a number of different stages of deformation during

an arbitrary load interval, corresponding to elastic response to yield,

followed by various phases of plastic deformation, elastic unloading and

reyielding. The simplest interval history would consist of solely elastic

behavior with the stress state always below yield. In this case the local

stiffness remains constant. A more involved history is depicted in Figure

(1). The deviatoric stress space plot illustrates the important states

for a point which begins a load interval below yield at stress S , deforms

elastically until the incipient yield state SI, and then undergoes contin-

uous elastic-plastic deformation reaching a final yield surface stress

state Sf. For this case the local stiffness changes abruptly when S is

reached, and thereafter it changes gradually as the stress state follows

the yield surface to S . A complex history entailing more than a single
=f.

stage of plastic deformation with elastic unloadings would be represented

in the plot by distinct stress excursions along and inside of the yield

surface from S to S

While the above outlines what is possible in an arbitrary step, let

us now examine what our averaging techniques can accommodate. The Marcal

and King elastic/elastic-plastic partitioning of a step is performed on

the basis of the vector AU., the total displacement change over a step.

Without any information about variations of displacement rate within the

interval, the procedure corresponds to that which applies if the rate were

in fact constant. If there is variability, then the partitioning is ap-

proximate: e.g., the procedure can accommodate only a single phase of

plasticity. Hence there is the need to restrict load step sizes so that they

encompass portions of the solution history which involve mildly varying

rates in plastically deforming regions. We have not yet considered the
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approximate flow rule and how it causes discretization dependency of the

solution. It is clear that this approximation is controlled by restricting,

the stress change S - S However, importantly, while Sf - Sl is being

reduced throughout a structure, the displacement rate nonuniformitic-s arc

likewise being reduced. Hence we have identified a single field variab:le

wiich directly governs the level of stiffness approximation for our pro-

blems, and we are now in a position to define a constraint condition.

If the modulus of Sf - S is denoted by AS , we regulate load step

size so that the maximum value of AS in the grid results equal to asec

specified fraction , times the yield stress Y. Hence the constralint

equation (1) takes the form

g(AU.) = ASmax - ay = 0 (4)
sec

We have not attempted to establish the relationship between structural

stiffness approximation level and the constraint parameter a. For the

general problem this does not appear to be possible. We can only state

that convergence to the exact solution can be achieved with decreasing

j values.

VARIABLE LOAD STEP SOLUTION ALGORITHM. Our elastic-plastic formulation has

a nonlinear equilibrium equation which takes the general form (3); however,

the explicit form of the equation at each step is itself undetermined. It

must be established during an iterative solution process. This problem

character follows from the undetermined nature of the plastic zone movement

in a step, and the associated stiffness discontinuity that a point experi-

ences at incipient yield.

The customary solution algorithm (for fixed step formulations) involves

successively solving for trials AU? using a stiffness matrix based upon AU 1=-- i -1 1

until convergence. Specifically, at the j-th 'teration cycle, the governing

equilibrium equation takes the form

K(AU?1 ) AU3  X . P 5
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The process starts with a guess AU? to establish the first cycle stiffness

equation. Strictly speaking, cycling must continue until successive trial

solutions are found which are identical, so that AUj then satisfies (3).

In our variable load step approach we adjust X. during the course of1
solution to find that AU. which satisfies both the equilibrium equation (3)

and the constraint condition (1). This iterative process starts with an
00

estimate of the load step, A. , as well as with the guess AU. For the

first cycle the matrix equation for AU. takes the form

K(AU.) AU = X0 P (6)

In general AU will not satisfy the constraint condition, although
-i

there always is a scalar multiple of this vector which will. The operations

required to determine the appropriate scale factor depends upon the nature

of the constraint. Regardless, i.e scale factor is found and the corres-

pondingly scaled displacement solution is used as the trial vector for the

next cycle of iteration. The next step size trial follows from interpreting

the scale factor as being equal to XI/X, as suggested by the linear nature
1 s fof (6). In general terms the problem after equation (6) is solved to deter-

mine .1 which satisfies
1

(AU. A./A.) =0 (7)

The above operations for the first cycle of iteration sets the pattern

for subsequent cycles. At cycle j a stiffness matrix is formed according to

the estimated displacement j - , and a new displacement AU. is

determined from

-- 1 2 -

Once AU. is obtained, X! follows from-1 1

g (AUiAx/x 1) = 0 (9)
1
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This iterative process is continued until convergence which can be

conveniently monitored by the cycle to cycle change in KJ, being that
i

LU and K? converge concurrently. In our work the convergence test was

that iteration terminates when the relative change in J in two successive
1

cycles falls below a given tolerance 6. Numerical results have indicated

a direct relation between the value of 6 and applied load-internal stress

imbalance. This is traced to the inherent inconsistency of satisfying the

equilibrium equations using a stiffness K.-__ - , while calculating stresses

on the basis of A1!. Hence the value assigned to 5 weighs heavily on the-1

ultimate accuracy of a solution, and this must be considered in the accuracy/

cost deliberations when undertaking an analysis.

To complete our discussion of the variable load step procedure, we

consider some additional restrictions that should be placed on the allowable

magnitude of K . When a definite total load vector P is specified, there is1 -

of course the need to restrict A.. < 1. Furthermore, EA. over all steps must1 1
equal unity. The final step to reach the total load P will usually be

smaller than that allowed by our constraint condition. For this case the

algorithm reverts to the standard fixed load procedure. When the load vector

P is indefinit- in the sense that the final magnitude of its components are

not specified, then there is no basis for restricting the values of X..1

This latter case applies to the test problems considered below. There the

vector P serves merely to specify load direction and the magnitude increases

step by step without restriction until limit load is detected.

NUMERICAL RESULTS. Solutions to two elastic-plastic problems are discussed

here to demonstrate the viability of the variable load step approach. First

we consider a plate in plane strain which is under imposed uniaxial extension.

Hill 7 has given the exact solution to this biaxial stress problem. An inter-

esting aspect of the solution is the load-extension relationship from incipient

yield to limit load. Whereas only a slight increase in applied tension is

possible after yielding and before uncontrolled plastic deformation occurs,

the displacement necessary to reach this limit load state is unbounded.

Hence this provides a valuable test case for our solution approach. In Figure
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(3), four numerical solutions are given along with the exact solution.

The solutions correspond to a values of 0.2, 0.1, 0.05 and 0.025, where

a is the freely specified constraint parameter in (4). The solutions

were generated for a Poisson's ratio equal to 0.3 and data are presented

in plots depicting imposed stress/yield stress versus imposed strain/yield

strain, (P/T)/Y vs. (U/L)/(Y/E). These solutions result regardless of

whether P or U is taken as the independent loading parameter. The numer-

ical data, labeled with their associated step numbers, are connected to

form piecewise linear approximations to the exact solution which is given

by the dashed curve on each plot. As would be expected the approximations

improve, the step sizes decrease, and the number of steps to final load

increases as a is reduced. All solutions were generated by specifying a

convergence tolerance value 8 equal to 10- . Three cycles were required

to meet this convergence test at each step of each solution.

The plot which dramatically illustrates the worth of the variable

load step approach is given in Figure (4). The plot gives the a = 0.025

discretization results, in the form of step size versus step number, for

both the force P and the displacement U loading conditions. Unless one

has a detailed knowledge of the exact solution the discretizations have

an unexpected character, suggesting that this problem would entail involved

trial and error reanalysis with the standard fixed load approach. The

results are displayed relative to P1 and U, the applied force and dis-

placement at incipient yield. The force boundary condition AP/P 1 data

(marked with triangles) is plotted using the left axis scale. The right

axis applies to the displacement boundary condition AU/U I data (marked

with X's). The AP/P values vary from 0.0066 for step 2, the first step

after incipient yield is reached, to 0.0009 at limit load. The corres-

ponding AU/U 1 values range from 0.136 to 0.940.

The second problem involves the plane stress uniaxial tension of a

square sheet with a centered circular cutout. This problem is more typical

of those t. -ountered in practical analysis in the sense that there are

undoubtedly complicated spatial variations in the structure which signif-

icantly change character as the yielding progresses. However, a compre-
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hensive spatial convergence study was not undertaken, for as throughout

this paper the emphasis was placed on load discretization and how it af-

fects the solution for an arbitrary finite element model. A model con-

sisting of four node isoparametric elements was used, having a total of

28 nodes.

Load-extension results are given in Figure (5) for ci choices of 0.05

and 0.15. The data are plotted in the normalized form (P/H)/Y vs. (V/H)/(Y/E),

where P/H is the uniform tension across the ends of the plate, and V is the

displacement of the center of the loaded edge. The step data are numbered

for the a = .15 solution and the spread of the plastic zone is illustrated

by the shaded elements in the sketches of the model. As can be seen, the

significant differences in the two solutions begin at the knee of the curve

when yielding loses its localized character.

Loading was continued until step size was reduced to very small frac-

tions of the incipient yield load P The discretization results are plotted

in Figure (6). As in the previous problem, it is unlikely that a priori

judgement would suggest the form of the results, with AP/P1 starting at

values of 0.447 and 0.188 and ending at values in the neighborhood of

0.009 and 0.001 for a equal to 0.15 and 0.05, respectively.

This problem provided useful data concerning the convergence properties

of the solution algorithm at a load step. As would be expected, it was

found that the typical number of cycles to meet the 6 test increases with

a value, and furthermore the required number increases at steps near limit
-3

load. A 6 value of 10 was used for this problem. Cycle counts averaged

close to 5 for a = 0.05, and in the neighborhood of 10 for a = 0.15.

As mentioned earlier, the solutions were obtained using a formulation

which employs an average yield surface normal 4 to define the plastic flow

rule for yielded points. Special considerations were rocessary in adapting

this averaging technique to the plane stress problem. In plane stress there

is the need to establish the average normal in terms of the out-of-plane

direct strain increment, but this strain component depends upon the flow

rule for its definition. A method was devised for defining these quantities

in a way which insures that both the planar stress condition and the yield

condition are satisfied. The details of the method will be described in a

forthcoming report
6
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ONLLUSIUINS. ihe numericai results, which now include the load path dis-

cretization and corresponding field solution, demonstrate the viability of

our variable load step solution algorithm in elastic-plastic analysis. We

expect that the algorithm will apply equally well to other nonlinear pro-

blems treated by stepwise nonlinear tangent modulus formulations. It is

clear that the success of the approach is predicated upon identifying a

field variable which controls the level of stiffness approximation, and

suitably constraining the variable at each step of the solution. In view

of the unpredictable character of the results obtained, the customary

fixed load step approach now appears tenuous. The variable step approach

not only eliminates the requirement for a priori discretization but also

provides a series of consistent incremental solutions according to the

desired level of approximation. The analyst need only specify the propor-

tional loading segments of the load path and supply values for the constraint

parameter (a in our elastic-plastic problems) and the convergence tolerance

parameter 6 for the iterative solution at each step. With these parameters

the analyst can efficiently examine and control sclution accuracy both as

regards stiffness approximation level and overall satisfaction of equilibrium.
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STRESS SINGULARITY AT THE VERTEX OF A FLAT WEDGE-SHAPED
CRACK BY VARIATIONAL METHOD

M. A. Hussain and S. L. Pu
U.S. Army Armament Research and Development Command

Benet Weapons Laboratory
Watervliet, New York

B. Noble
Mathematics Research Center

Madison, Wisconsin

ABSTRACT. Three dimensional elasticity problems are generally complex.
In this paper we present the analysis for the stress singularity at the
apex of a three dimensional, flat, wedge-shaped crack under general load-
ings. The problem is reduced to a set of coupled dual integral equations.
Because of the complexity they are not amenable to a closed form solution.
A variational method is developed to handle such problems. The physical
interpretation of the results are also presented.

1. INTRODUCTION. The theory of fracture mechanics has been a very
successful tool in engineering application in recent years. This is mainly
due to the use of a singlo. characteristic parameter namely the stress
intensity factor, that is the coefficient of the stress singularity at
the tip of a crack in the linear theory of elasticity. In most of the
two dimensional cracks, in homogeneous media, the singularity is of the
order one half. For the three dimensional cracks, however, the singularity
depends upon the geometric configurations.

In this paper we study the singularities at the apex of a thin
wedge-shaped crack shown in Figure 1 under three loading conditions.
Using the near field approach, the problem is reduced to an eigenvalue
problem for coupled dual integral equations. The results indicate that
cracks tend to straighten out at the apex.

In the following sections we first prove the variational theorm by
which the eigenvalue of coupled integral equations is to be obtained.
This eigenvalue problem is not the linear one commonly encountered in
mathematical physics. Next we present Papkovitch stress function approach
to three dimensional theory of elasticity. Then coupled dual series rela-
tions are obtained by using mixed boundary conditions. These series are
transformed to coupled singular integral equations. Finally the varia-
tional method is applied to the coupled integral equations to obtain
eigenvalues.
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The variational method completely avoids the solution of complex
singular integral equations. In this study Macsyma was found to be an
indispensable tool at all levels of analysis.

II. VARIATIONAL THEOREM. Consider the following pair of homogeneous
coupled integral equations with Fredholm kernels.

a a
f K11 (,*;v)f()d* + f K12 (0,*;1i)g(p)d4 = 0 (1)
0 0

a a
f K2 1 ( ,*;v)f(*)d* + f K22 ( ,*;p)g(*)d* = 0 (2)
0 0

where eigenvectors f and g and the eigenvalue V are unknown and KI1
(*;p) etc. involve p in a linear or nonlinear fashion. Construct the
following characteristic equation for .the determination of V* with
appropriate trial functions f*(*) and g*(*).

o, a a a
(f f*(X)f Kll(x,y)f*(y)dydx)(f g*(O)f K2 2(C,p)g*(*)dod)

0 0 0 0
a a a a

-(f f*(x)f K12 (x,y)g*(y)dydx)(f g*(O)f K2 1 (,,)f*( )dd¢)= 0 (3)
0 0 0 0

If f* and g* vary around the exact solutions f and g as

f*( = M) + 6(€) , g*() = g(O) + 6n(o) (4)

then (P*-P) is stationary around 6 as 6 approaches zero. That is

*1 = ~+ 0(6 2 )

provided

K22( = K2 2 (NO) (5)

K12 ( @,*) K 2 1 ( , )

Proof: Symbolically we write equation (3) as

(f*Kllf*)(g*K2 2g*) - (f*K12g*)(g*K 2 1f*) 0 (6)
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where

f* = f + 6E , g* = g + 6n (7)

Expanding the kernels around V, we have

Kl1(p) = Klt(p*) + AK I(p*) + 0(A 2 ) etc (8)

where

A =(9)

Substituting from (7) and (8) into (6) and using (5) we obtain

[(fK 1 1f)(gK 22g) - (fK1 2g) (fK12g)]

+ 26[(K 1 1 f)(gK 22 g)-( K12g)(fK1 2g)+(nK 2 2g)(fK1 1 f)-(fK 12n) (fK12g)]

+ L1A + L2 + higher order terms = 0 (10)

where

= (fKlf)(gK22g)+(fK 1 f) (gK22g)-2 (fK1 2g)(fK 2g) (10a)

L2 = (& K1 1 ) (gK2 2g)-( K12 g) 2+4(fKII ) (gK22n)

+ (fK1 1f) (nK22n)-(fK 1 2n)
2-4(fK12n)(EK1 2g) (10b)

Using equations (1) and (2) it is seen that the first two tenns in (10)
vanish. Hence

A = 62 (L2/L1) + 0(63) (11)

The above proves that A is of the second order in 6. This completes the
proof of the theorem. Because the eigenvalues involved in kernels can
be in a nonlinear fashion we cannot prove its bounds as can be done for
the linear case in [1].

III. PAPKOVITCH STRESS FUNCTIONS. In the absence of body force
the equation of equilibrium of a homogeneous isotropic elastic solid is
given by

V2u + . VV-u = 0 (12)
1-2v
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Using Helmholtz decomposition theorem the solution of (12) can be written

as [2,3]

2Gu = VBo V(r§B)-4(1-v)g (13)

where G and v are shear modulus and Poisson's ratio, Bo and B are known
as Papkovitch stress functions satisfying

V2B0 o , = 0 , B= i$+j kX (14)

For computational purposes it is convenient to write the solution as a
superposition of the following basic solutions.

1st Basic solution: 2Gu = VBo

2nd Basic solution: 2Gu = V(x*)-4(l-v)*i
(15)

4rd Basic solution: 2Gu = V(yw)-4(l-v)wj

4th Basic solution: 2Gu = V(zX)-4(1-v),Xk

These basic solutions were transformed to the following spherical coor-
dinate system

x = r sine coso , y = r sine sino , z = r cose (16)

with the origin at the apex of the crack as shown in Figure 2. This
enables us to obtain near field solutions and to study the stress singu-
larity at the apex. Tho complete results of components of displacement
and stress for basic solutions are given in Appendix 1. Since we are
interested in the power singularity at the apex, so we choose Papkovitch
potentials in the form

H(r,8, ) = r"H1(e, ) (17)

where V is the eigenvalue to be determined. As can be seen from Appendix
1, stress components will be of the form

a = O(r - l) (18)

which will be singular when V < 1. For the displacements to be finite
we seek positive eigenvalues between 0 and 1.

The near field geometry surrounding the apex permits us to write (17)
as the separation of variables solution

-
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Cos m
H(r,O,4) = [ r P (cose) or (19)

m sin me

where P (x) is the associated Legendre function of the first kind with
degree p and order m. When (19) is substituted into the four basic
solutions given in Appendix 1 we see that the forms of some solutions
thus obtained are not convenient to work with. The final solutions
used in this analysis are designated as solutions A, B, C and D which
are given in Appendix 2. Solution A was obtained by replacing p by P+l
after the substitution from (19) into the first basic solution. Solution
B is obtained by adding the second and the third basic solutions with
proper trigonometric functions in (19), replacing m by m+l and then using
Legendre recursion formulae. A similar process was used to obtain solu-
tion C. Solution D simply comes from the fourth basic solution with the
use of (19).

Solutions A, B, C, and D must not be linearly independent. This is
due to the fact that the condition that the vector point function is
solenoidal has not been used explicitly in Papkovitch stress functions
approach. We found these solutions are indeed not independent. A
relation among them can be written symbolically in the form

(p+m+l)[C] = [B] + 2(p+m+l)[D] - 2(p-3+4v)[A] (20)

Hereafter solution C is replaced by solutions A, B, D using (20).

IV. THREE MODES OF CRACKS AND COUPLED INTEGRAL EQUATIONS. For a
crack shown in Figure 2, the leading edges of the crack are 0 = ± a and
the crack is in the x-y plane (0 = n/2). Let D- and D+ be the cracked
and uncracked region of the plane 0 = f/2. Within the cracked region,
the displacement is discontinuous. If the discontinuity is in the
z-direction (u+ - u; = finite), the crack is under mode I; if the dis-

0 - u+ -
continuity is in the x-direction (ux - ux = finite), the crack is
defined to be under mode II; and if u. -+u = finite, the crack is
defined to be under mode III. Boundary cohditions for various modes are
tabulated below.

BOUNDARY CONDITIONS ON 0 = /2

Non Mixed Conditions Mixed Conditions
(in D- + D+) in D- in D+

Mode I Tor  = 0 oe 0 u0 = 0 (21)

Mode II 'le 0 TOr m Te¢ = 0 ur = u = 0 (22)

Mode III a0 = 0 T Or = 
Te = 0 ur = u¢ = 0 (23)
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For mode I, ue is even in 0. This leads to the use of the trigonometric
functions at the top of (19). The boundary conditions of (22) and (23)
are identical, but the symmetric properties are different for mode II and
mode III. In the former case, ur is even and uO is odd in 0 while in the
latter, the reverse is true. Hence the proper set of quantities should
be selected in (19), for each case.

IV.A. Mode I. Using Eq. (19) and the non-mixed conditions of (21),
we have

Bm = 0 , Am = (m+i+l)-(l-2v)Dm (24)

The mixed boundary conditions of (21) and using (24) and (19), yield

X bm cos mo = 0 O_<a
(25)

q b m cos mo =-0 
a< <1(

where I denotes the summation with respect to m for m=0,l,2...-, and

bm = (-m+li+l)D Pm (-m+P+I)'1P /P pm = P (0) (26)

IV.B. Mode II. For the homogeneous condition of oo in (22), using
(19), the coefficients A, B and D are related in the form

2 (Iv)Dm = (m+l+l)Am + [u2+2v(+l)-2(l-v)m-l]B m

This relation and the mixed conditions of (22) yield the following coupled
dual series:

Em cos m = 0 0_<a

(RmEm+SmFm)Cos mO = 0 a<(<2

Fm sin mo = 0 0<_<a
, (28)

(UmFm+TmEm)sin mo 
= 0 a<O<__2

where denotes the summation with respect to m for m = 1, 2, .. and

Em = -(m+p+l){ jAm+[4m(l-v)2+V (i 4v-m-3)]Bm)P m  (29)

F = (m+lj+l){mA +[4p(l-_) 2 +m(li+4v-m-3)]B )Pm (30)
m mm 1
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Rm = [m2 -p(,+l)(l-v)]V Sm = m(l--V)V(31)m

Um = [(l-v)m
2 -(i+l)]V m , Tm = m(l+V)V m

in (31) Vm stands for +i/Pm/ [2 m+ m 2)1

IV.C. Mode III. Similar to the preceding case, we have

! Em sin me = 0 O<_¢<a
) (32)

[ (RmE m+Sm F )sin m4 = 0 a< <__2

[ Fm cos m4 = 0 O<<a

[ (UmFm+Tm E m)Cos m = 0 a<<r (33)

It was found that the dual series (25) for mode I is identical to
that of a potential problem stodied in [4], [S], [6] and will not be
discussed here.

For convenience we make the following change of variables

= -u , a' = Tr-a , (-l)m- = E (-1) Fm = Fm

Rm = Rm '(l-V- P) , S m  Sm (1-V-Vv) (34)

Um = Um '(l+vi1)( - l) , Tm = Tm'(l+,)( -l)

The dual series of (27), (28) now become

Em' cos mu = 0 (35)

Fm' sin mw = 0 (36)

[ (Rm'Em'+Sm'Fm')cos mw = 0 (37)
, (Tin0<u<a'

(T'E m'+U 'F ')sin m W= 0 -- (38)m m

Let the right hand sides of (35) and (36) for the interval O<<a' be
denoted by unknown functions f(w) and g(w), respectively. The Fourier
inversion gives

E I = 2 I f(')cos mpd*

Eo ' f at f(i)d7 0 (39)0 a'F ' = 2 f g(ij)sin 
mdp

m 7 0
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Substituting from (39) into (37), (38) and interchanging the order of
summation and integration we have the following coupled integral equa-
tions for the determination of f and g,

J K11 (w,*;p)f(*)d* + f K1 2 (w,*;v)g(*)d* - 0 (40)
0 0

at as
f K2 1 (w,*;)f(*)do + f K22 (w,*;p)g(*)d* = 0 (41)
0 0

where1 Kll(w,,;P) = 1 Ro' + J Rm ' cos mw cos m
2

K 12(w'p;P) = I'S cos mw sin m* (42)

K 21 (w,*; ) = 'T M ' sin mw cos m

K 22(w,*; ) = V'Um  sin mw sin m*

It can be shown that [7]

m
____ - -2 mn- + 11n~+2 rn-p mj m-1 /rrn (43

mP -m MP-1 2 ) )/r(- )/r 2.) 2(43)

11

Using (43) and (34) the following asymptotic expansions can be established.

Rm = -(l-v-pv)- (1/m) + 0(1/mR2 ) Sm'= 1/m2 + 0(1/m 3 )Rm ' Sm'(44)

U ' = [-(l-v)/(l+vp)](1/m) + 0(1/m 2) , T' 1/m2 + 0(1/m 3)

Substituting from (44) into (42) and summing the dominant part of the
series we have [4], [8]

K = 1 1
Kll(-v-v log 2IcosO-cos*1 + regular terms (45)

K (WMtp) -(l-V) logjsin( 1)/sin( W_*)j + regular terms (46)
22 2(1 +v) 2 2
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The previous txpressions show the kernels have logarithmic singularitics.
Similar analysis can be carried out for equations (32) and (33) for mode
III (interchanging Rm' and UrM' , Sm' and Tim') .

V. APPLICATION OF VARIATIONAL PRINCIPLE. Equations (40) and (41)
are identical to equations (1) and (2) and all the conditions of the
theorem required for the kernels are satisfied. In this section we
shall apply the theorem to obtain approximate eigenvalues by assur::i:ug

approximate trial functions. Without causing ambiguity we shall drop
the asterisks and assume the following trial functions,

f(t) = (%o + cost)cos(t/2)/(cost - cosac')12

gIt) = [(l-cosr') + 2cost]sin(t/2)/(cost - cosal) (47)

where

o _- _cos2(,/2) l+(l-x-oj)R o' + log sin 2 (a'/2) (48)
(l-v-vi)R o' + log sin

2 (ot'/2)

The above trial functions are the first approximations to the integral
equations (40) and (41) with kernels (42) replaced by their dominant y-irt s
giver, by (44). The method of obtaining such solutions by direct ce-lpi-
tation is illustrated in [9].

Substituting from (47) into the characteristic equation (3), chanjnIg
the order of sumnation and integration and using the integral representa-
tion of Legendre functions [71, we obtain

1112~2 = 0 (491
12

1I11i122 1 I12 0

where

I = 2R '(l+2 +P1 ) + Rm '[P + (l+2 )(P +Pl) + P j ]2
11 0 o 1 mm+1 o m m~l M_

122 4.U 'm+ 1 - P1 (PMPm-1) P m-21 (50)

112 = -2Sm'[PM+l + (l+2 6o)(Pm Pm-l) + Pm-2] [Pm+l - Pl(Pm-P- - Pro-21

Pm= Pm(Cos a')

For different values of v and a' (the complementary angle to half of
the vertex angle of the wedge-shaped crack) we get approximate values of
W from equation (49) for both modes II and III.
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The form of (49) is very well suited for Macsyma evaluation and
using eight terms for summations in (50), the results for P are marked
by x in Figure 3 where the solid lines are results obtained by another
method [9]. The results by both methods are in good agreement.

A further refinement of results can be obtained by selecting

f(t) = (A + B cost) cos(t/2)
(cost-cosa') 1/2

(51)

g(t) = (C + D cost) sin(t/2)
(cost-cosa,)I12

and formally extending the variational technique to a characteristic
equation obtained from the vanishing of the determinant of a four by
four system (A, B, C, D in (51) must not all vanish). The results,
using Macsyma and summing to a maximum of eight terms in (50), are
compared in the following table. They also are shown as * in Figure 3.

VALUES OF V FOR V = 0.25

Half Vertex Variational Method Direct Method
Mode Angle a Using (47) Using (51) [9]

0.1w 0.9333 0.9616 0.9582

0.3w 0.6489 0.6961 0.6953

II 0.57 0.4752 0.5107 0.5017

0.7w 0.3585 0.3749 0.3654

0.97r 0.2213 0.2469 0.2137

0. Iw 0.9739

0.3w 0.7642 0.8253 0.8270

0.5w 0.4881 0.5192 0.5027
III

0.6w 0.3829 0.4034 0.3914

0.7wr 0.3021 0.301S

0.8 0.2372 0.2335
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Even the rigorous proof of the extension of the variational techniaue

from the two by two system using trial functions (47) to the four by four
s st m using trial functions (51) is still to Ice dne, the results thus
obtained are in good agreement with results achievod by us ir-g trial
functions (47) or other methods [9].

VI. CONCLUSIONS. For modes II and III, the results show that the

stress singularities are dominated by the vertex angle as well as the
elastic constant v of the material. The results further indicate that
when the apex angle is greater than 1800, the stress singularity is

stronger than one half enhancing the tendency of crack front to straighten
oat. Similarly, when the vertex angle is less than 180', the stress
singularity is less severe than one half and, again, this will tend to
retard the growth at the vertex until the crack front straightens out.

Macsyma was extensively used throughout the analysis, especially
in the generation and uoe of special functions such as Legendre func-
tions, Gamma functions, Bessel functions from Share directory, in the
sum ation of series, in the so 1 tion of linear equations, in seeking
roots of determinants of atrIces, in the plot routine and in the, ..... " .c This inveStization w ul

.reation of file for Eartoh with Teco, e Thi i
have been extreel..,-1x tedious without Macsym:a. The methods as .cl as
results in the full entirety, to our knowledge, do not seer. to have
appeared in literature.
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Figure 1. A flat wedge-shaped crack under three different modes and
its two-dimensional counterparts.

Figore 2. A spherical coordinate surrounding the apex of a thin an-gular
sector crack.

-495-



1.0 _z-O_25
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Q/.ir

Figure 3. The eigenvalue p as a function of a]/ for v 0.25.

(a) Variational results indicated by x and for mode I.
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Figure 3. The eigenvalue 1' as a funIction of cl/-n for v =0.25.

(b) Variational results indicated by x and for mode 1ll.
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APPENDIX I

In this appendix we give components of displacement and stress in terms

of Papkovitch stress functions #, *, w and A. A subscript to a stress

function means the partial derivative of the stress function with respect

to the variable represented by the subscript, e.g. 4r = D#/3r, *rp =

3({ /ar)/ap. The variable p = cos e is used in the place of in both

appendix I and appendix 2. The notation p sin - (1-p2)1/9 is also used.

The First Basic Solution:

2 GUr =

2 Gue - 0 /r
p

2Gu, /(rp)

r rr
oae r-2(p 2 pp - pf p + re r)

a r-2 ( /p2 + r5r - po )

T € =_r-24 PO + p0f/P 2 )

T r: r-2-I(r~r, - W.)

SrO =r-2 (-rr + p )

The Second Basic Solution:

2Gur = [rjr - (3-4v)F]p cose

2 Gue = -[ 2*p + (3-.v)p ]cos5

2Gu =f cosS + (3-4v) sin

aor =[rr r - 2(1-v),br + 2r-l p*p]p cosS + 2v(rp)-]*p sin5

cc = r-[p 2*pp + (1-2v)pp + (1-2v)r ]p cosS + 2v(rp)-i* sin4

= (rp)-[* + (1-2v)rp 2 * r - (1-2v)pp2 p ]Cos5 + 2(1-C)(rp)- sine

=0 (-rp)-jP2p, * 2(1-v)p,])cos5 - (1-2v)r-lp*p sin..

Tro = r-1!r* r - 2(l-v)5f]coso + (1-2 v)mpr sin5

Tre [p 2q 2 (1-2v)PVr + 2(1-v)r-2,p ]Cos5
rOrp rp
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The Third Basic Solution:

2ur =[rw r - (3-4v)w~p sino

2Gu8 = ~p2w p + (3-4v)pw]sin

2Gu 0 w 0 ino - (3-4v)w coso

a r =[rwrr - 2 (1-v)wr + 2vr-lpw pIp sin 2v(rp)-I COSO

0= r-1[ p2w pp + (l-2v)pw p + (1-2v)rw r~p Sin - 2\(rpylIw~ Cos+

=. r1I[w., P 2 + (1-2v)rw r- (I -2v) pw ]p sino - 2(1-v)(rpY-c. coso

T = (-rpf-'[ p2w P + 2 (l-v)pw 0]SinO + (1-2v)r 1lpw p coso

Tro r-Irw - 2(l.-v) cO]sin - (1-2v)w r cost

T r6 = [_p~w r- (1-2v)pw + 2(1-vr p2p]sn

The Fourth Basic Solution:

2Gu r = r~r - (3-4v)X]p

2Gu, [-pX p + (3-4v)X]p

2Gu, =p-x

* r =rpx rr - 2 (1-v)p),r - 2rl2

08 = r-p2 + (1-2v)pL + r 1 (p2+,v-2-2)X

=r 1lp-2 + (1-2v)rpX r (P 2+2vp 2 p I

To= r 1 '-px po + (2-2v-P-2)x 0

T ro = (-rp)Y'rpX or - 2(1-v)pX,]

Ter = P[-P)rp + 2(1-v)r-lp p (1-2v)X r]
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APPENDIX 2

In the following solutions, the selection of cos mo or sin m# depends
on the geometry of the problem. The sign on top goes with the trigono-
metric function on the top and vice versa.

Solution [Al: VmCsM

2Gu r (= ij)r' P,+ sin mf

2Gu0 = (rl1/p)[(ii+l)p - (mI+l)Pm] cos mo

1.+1 P sin mo

)- m sin m+
2Gu 0= + (r /p)mP P1CsM

*~~~~~ =l(jlrP1Pm Cos MO

r )J+I sin m

=~~ ppl1 sin+ siom

(6= +(r 1/p2)[2)Iippm -(M+PI))P + i pmoi~)
13+1+ V osP

T = -( p0-1 /Pl)PmI

T = +T -( Pl/) [j lpp m + - (m+p+l)Pm84 i 1Cos MO

rO sinj -

Solution JB]:

2Gu = rl (P-3+ulv)[(-m+ip+i)P - MPIp m CsM

r P 1 sin n4'

2Gue = r I/p)f (-i-4+4v) (-m+l+l)pP m + (I +)[i+4-4v P 2(l+4-4v)]P m  n$M

- P+1 Sin m4'

2Gju = (r~j/p)(i+4-4v) [(-m+lj+l)P~, - snplp in m

2CO m 2
a (m+jI0j-p2v-m-v ,+(i+p+l)(-1u2. 3i.2v)pPn

Ssin rnO
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00 ( l/2){(In+4+1)I(-4 2 .214v(3-v)(l+1)
2 +(jn

2 +(S-4v)M44-4v)]P

+ (m+ 14+1)p[m2Sm+4nv-4+4v+p 
2 C14+3132v)]P)Co

Isin m

a (r~ ji1,-2){C(-+)j41) [-m2Sm+4nv-4+4 vq
2(12v)(mIj+l)IP m

co rii$

+ (m+ 1 4+)p[m2+m,4mv+44v(1-2v)(?4+)p 
2]pJ)Csm

Ii sin in*

T (r Ip-){ (-m+14+)p[w
2 4(5-4v)rn+4(1v] m

+ (m+lp+1) v 2Cmlj+(3-2v)m+2(1-vhJ+4.(17V))-M 
2 _(5-4v)m-4(1-v)]P~l inm

Cos mf

= + (r /p[m(p-2+2v)+2u(-v)-2(1-v)] [(-m+ii+)P 4  - (m+P+i)pP]sin] m

Tr = (r /)(-m+ii+l)p[-mlp+2(1-v) (m-lp+l)]Pm1

COS Tfl

+ (m+pj+l)[mp+2(1-v)(-m+l4-1)+P 2(_,2+2-2V)]Pm)co
sin mf

Solution [C]:

2 ur = r lj( V-3 + 4 v ) (-P , + + PP s n m

2Gu6 = (r i/p){(-m+4-4v)pP m + [(m-4+4v)+p26i+4-4v)]Pmln) Yn
11+1 ii sin tn

2Gu, = + (r I/p) (m-4+4v) (-P 4 1 + PP'm) sin m

0Cos in

a = r j1 (~ [_J+p(-v-m+vP + (I1 2 -3p-2v)P m I Cs
r P+ p Dm

sin m$

a = (r 11 l/p2) {[p 2(U22vj(-2)(-1) + -vm+(-)P

Cos M+~

+ [p2 (l-2v)(2ii+I) - m2 +(S-4v)m-4(1-v)]pP m)
sin m#
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V -r1/p2){LM2-(S-4v)m+4(1-v))pPnm

+ [ 2(-Iflj(32v)m+2(-v)j+4(1V))_J2+(S-4v)m-4(1-,J;]P 
m ) sn

T _r- l/P)[-m(-vm+-v)(ii-1)] (-a-' + PPm si m

Cos m#

=(r P./P)( -miA+2(1-v)m+2(1-v) (,-l)]pPm

+ mij-2(1-v)m-2(1-v)CIj-)- p 2C-V+2-
2v)]Pm Co I

sin mo

Solution [D]: Csm
2Gu r =(ij-3+e4v)r pP snm

psi m*si

f Cos m

Oru = (rl/ ){(-m+ij+l)pP
m  + . 22 ) P~)C sM

sinn m$

ar =r-/ r{2 (mp1)m +(-
2 3ip2vPM ) +cm+++ (p-3,32)p os

esi sinim

T = (rI lp2){( -1)pprn + [p+2p (p+3-2v)]pm ) n

T ±(2-v-pmp~ Ij1/p)pmsin m

=f + cos mt

T*O (r jl1/P){(-m+J+)(I2+2v)pPn 1  [-i 2 +i4(1-2v)+2(1-v-)

+P 2 (~I2-2+42v)P Co 1

isin rnf
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MJTIONS PERTUPBING GTA'YES OF REST OF VISCOELASTIC SOLII.'

P.M. Dixit and D.D. Josech
Department of Aerospace Eng. and Mechanics
University of Minnesota, MPLS. 55401
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equations perturbing the natural state
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11. The linearized theory and elastic stability

Appendix: The spectral problem for the stability of Riv\lin':
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1. Summary

Our goal is to derive the canonical forms of the stress and

equations of motion governing the motions which perturb the rest

state (of elastostatic deformation) and the natural (unstressed

and undeformed) state of viscoelastic solids. In this theory

nonlinear elasticity appears as a special case of nonlinear

viscoelasticity which arises when the prescribed data is steady.

The domain of deformations on which the constitutive equation

for viscoelastic solids reduces to the constitutive equation for

elasticity is the set of all kinematically admissible states of

rest. We find the forms of the stress and discuss some properties

of the equations of motion which perturb states of rest (elasto-

statics). There are too many unknown functions in the theory of

perturbations of states of rest of viscoelastic solids to make

the theory attractive to material scientists interested in

rheometrical measurements. For this purpose, the theory of

pertul.'..tions of the natural state of viscoelastic solids is

more attractive. We develop a detailed theory of perturbations

of the natural state and derive equations governing perturbations

of zero displacements which may be solved sequentially. At each

stage there are three equations for each component of displacement

when the material is compressible and, when incompressible,

there is an additional unknown, the reaction pressure, and an

additional differential equation expressing the incompressibility.

We identify the material parameters which must be measured to

distinguish one solid from another. In the second order theory

for compressible materials there are six elastic constants and

twelve viscoelastic material functions. The number of constants

is reduced to two and the number of material functions to three
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in the incompressible case. For incompressible solids the leading

operator which must be inverted at each stage in the perturbation

is characterized by one constant and one function. If the

constant and function satisfy some mild and physically natural

conditions the solutions of the perturbation equations will be

stable and unique. We show how to use the perturbation equations

for material studies by deriving several problems of possible

application in the design of rheometers for viscoelastic solids

in motions which perturb the natural state.

In the last part of the paper we derive the linearized

equations governing viscoelastic perturbations of elastostatic

solutions with an eye to potential applications in the dynamic

theory of stability and bifurcation. We give a heuristic and

completely physical argument that solids undergoing static de-

formations cannot bifurcate into time-periodic motions. We

argue that critical eigenvalues for the stability of elasto-

static solutions cannot be complex-valued and suggest this

principle: any choice of the material parameters leading to

complex-valued critical values is the wrong choice. Finally,

as an example of the nature of the application of the linearized

theory, we derive the spectral problem governing the stability

of Rivlins (1949) universal solution of the torsion of an

elastic cylinder.
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uotation

We have used the same symbol for functions and their values.

Sometimes for brevity we have suppressed some or all of the

arguments of some of the functions. But they are easily under-

stood from the context.

Relation to previous work

Our work falls in the framework of what elasticians call

"small on large". This means small unknown deformations are

superposed on large known ones. The unknown deformations are

generally treated as elastic but in at least two important works,

Coleman and Noll (1961) and Pipkin (1964), the unknown deforma-

tions are presumed to be viscoelastic. Some of our best results

do not fit in framework of "small on large" or even of "small

on small" but, instead, fall into the frame of ".small on zero".

In the theory of solids, treated here, the "small" is arbitrary

and viscoelastic ar'd the "zero" corresponds to the natural

state of the body. Many of the results of Green & Rivlin (1'957),

Coleman and Noll (1961), Pipkin ard Rivlin (1961) and Pipkin

(1964) can also be interpreted as falling under the theory of

"small on zero".

We can also argue that the results given by the authors

.aentioned in the last paragraph are contributions to 
the asymptotic

Lheory of the stress in simple materials. In such studies the

,,arm of some measure of deformations is presumed small and one

seeks canonical forms of the stress which perturb 
the zero norm.

NaLurally, these canonical forms are ordered in powers 
of the

,elevant measure of deformation expressed in terms of multi-

linear functionals simplified to the degree required 
by considerations

of material symmetry.
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The Duroose of the asvmptotic theory .s to sDoci,' rf:.'-. .

simple forms of the stress when the motion is one whicl a-

small in the appropriate norm. The asvmptotic theory is

approximate, since the exact conditions allowed by nature,

under which the appropriate norm is small, is left unspecfied.

In contrast, we have tried to establish the consequences

of the fact that the small norm must somehow arise from small

prescribed data, like small external forcing, filtered throuch

the eauations of motion. So we 'come up with an ordered

asymptotic sequence of boundary value problems in which redundant

terms are purged from the canonical forms of the stress, and

we derive algorithms in which the ordered computation of motion

and deformation is reduced to a recipe. So our theory is a

formally exact asymptotic theory in which the prescribed data

rather than the unknown motion is presumed small.

The heart of our theory is the perturbation equations

of motion. So we are obliged to consider the usual interesting

questions of existence, stability and uniqueness. Naturally,

these questions cannot come up in studies which are abandoned

at the point where the stress is arranged into a suitably

invariant series of powers of the deformation.

In solids it is possible to choose several different

measures of deformation to express the stress. These different

choices lead to different but possibly equivalent expressions

for the stress. We have thought the choice of measure of

deformation to be important and we followed Coleman and Noll

(1961) because in their formulation the constitutive ecuation
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for all static defor-mations of viscoelastic materials obviousIv

and easily reducesto elasticity. So there is no differencc

between nonlinear elastostatics and nonlinear viscoelastostatic;.

There is no doubt that the theory of Green & PRvlin (1957)

Pipkin and Rivlin (1961) and Pipkin (1964) also reduces to

elastostatics for static deformations but the reduction is less

obvious. Suprisingly, this obvious connection between elasticity

and viscoelasticity, which i-: certainly well-known to people

working in mechanics, seems not to have been stressed (or even

mentioned) by any of the authors cited above.

The parts of the theory of Coleman & Noll (1961) which wc

use are summarized in the introduction. In this formulation

the stress depends on the left Cauchy-Green tensor and the

history of the right relative Cauchy-Green tensor. Green and

Rivlin (1957), Pipkin and Rivlin (1961) and Pipkin (1964)

express the stress in terms of the history of the riqht Cauchy -

Green tensor (not the relative tensor) which is defined is

C(X,t) = F(T) F(T)

where F is defined in the first eouation of the introduction.

For some reason that we don-t understand Pipkin works with

the time derivative C. The time derivative of kinematic ,'n:o'

is good for fluids but not for solids (Joseph & beavers, .9'V7).
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2. Introduction

The viscoelastic solids which we study are simple isotropic materials

of the type discussed in 933 of the treatise by Truesdell and

Noll (1965). The material properties of such solids are

independent of time and the state of stress is determined by

the first spatial gradient of the deformation

F = Vx, F. = xi/aX j
- -i-i

where Xi are the cartesian coordinates of a particle X of the

body in the undeformed isotropic state and xi (X,T) are the

cartesian coordinates of the position x of the same particle at

the time T. The Cauchy stress at a particle is given by an

expression of the form

(2.1) T= [B; G(s)]
s=0

where

B = F FT

is the left Cauchy-Green strain tensor at the present time t,

9(s) - Ct(T) - 1, S = t - T, -00 < T < t.

Ct(T) is the right, relative Cauchy-Green strain tensor

ct(T) = Tt(T) Ft(T), t(t) =

where

F = V .t(XT), Ft(t) = 1

is the relative defornation gradient tensor defined in terms of the relative

position vecLor At(x,t) of a particle which at the time T = t

is at place x = 2t(x,t). I is a functional of the history

G(s) of a particle depending on the tensor parameter B and is

such that
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(2.2) %1,= 0 = 0.

Eq. (2.2) says that there is no stress in the undeformed state

of the body. The stress-free, undeformed state of the body

is called the natural state of the body.

Nonlinear elasticity arises from (2.1) when G(s) is put

to zero:

(2.3) T(t) = I[B(t), 01

It is possible and, in some asymptotic limits, it is useful to

regard (2.3) as defining the dynamical response of a nonlinearly

elastic body. But we also note that an elastostatics

(2.4) T = 5[g, 01

of viscoelastic solids arises automatically from (2.1) for

every deformation such that x = x(X, t) is independent of t.

(If x is independentoft,then F (T) =1 and G(s) = 0.) We think

of the class of t-independent deformations defining the rest

state of a viscoelastic solid as coinciding with elasticity;

that is, all solids are at least viscoelastic but the constitutive

equation for viscoelastic solids reduces to elasticity when the

deformations are restricted to t-independent ones. So from the

point of view of material science we do not think it useful

to admit dynamic elasticity as a viable subject. After a time

vibrating solid bodies always come to rest, unless forced, and

when they are in motion these bodies satisfy a constitutive

equation which is at least as complicated as (2.1). So we think

that nonlinear dynamic viscoelasticity and nonlinear elastostatics

are not different subjects but just different realizations of the
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same governing equations corresponding to unsteady or steady

solutions which arise in response to the given data: the initial

and boundary conditions and the prescribed forcing. In any case,

that is the nature of the theory which we shall now develop.
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3. Frech~t expansion of the stress

In the state of rest (elastic deformation) G(s) = 0. We assume

that the stress perturbing states of rest is expressible as a

Frech4t-*&xpansion of _ in powers of G(s). Thus,

(3.1) .., G(s)] =A[B,] + !1iB,OlG(s)]

+ 1 ; [A IOj(sl) 1G(S 2 )] + OIG(s)I 3)

where I[B,01] is a linear operator and ' [B'01"I a bilinear

operator evaluated on the zero history. Green and Rivlin (1957)

assumed an expansion in the form (3.1) with the Frech4t derivatives

expressed as multiple integrals. They appealed to the Stone-Weirestrass

theorem for functionals for mathematical justification. Coleman

and Noll (1961) also arrived at an integral expansion. They

introduced a Hibert space of histories endowed with a weighted

scalar product (fading memory) and appealed to theRiesz representation

theorem to justify an integral representation of the first term.

We follow the authors just named and assume that the terms

in (3.1) can be expressed as integrals.

(3.2) T = f(B) + f K(s, B(t))G(s)ds
0

+ f f P(Sl,S 2 ,B(t))G(Sl)G(s 2 )dSldS 2 + O(lII 3)
00 _

where K(s,B) is an isotropic tensor function of B of order four

whose components K ijk are symmetric in successive pairs of

indices, r(sl,S2,1 ) = P(s2 ,slB) is an isotropic tensor function of B

of order six whose components rFijkmn are symmetric in successive

pairs of indices.

If the integrals in (3.2) are set to zero we are left with

-512-



T= f(B) which is supposed to be the response of bodies which

are said to be purely elastic. In mathematical studies various

conditions are proposed about f(B) to insure appropriate

properties of existence and uniqueness of the solutions of the

equations governing the dynamic response of nonlinearly elastic

bodies. In our study of nonlinear viscoelasticity we are also

required to introduce small nonlinear effects of f(B). But

in our study special assumptions are not required. Instead,

the determination of some nonlinear properties of f(B) is left

as an open question for rheometrical measurements and experiments.

The methods for finding the most general form of isotropic

tensor-valued functions of many tensors 1-ave been given by

Wineman and Pipkin (1964), based on earlier work of Rivlin, Smith

and Spencer (see R.S. Rivlin, 1969; Truesdell & Noll, 1965, §13).

Dixit (1979) applied these methods to (3.2). The reduction of

(3.2) to isotropic form is like the Hamilton-Cayley reduction

of a tensor polynomial of degree m > 2 to m = 2. Suppose we have

a tensor* A which is a function of tensors B, C,

A= g_(B, C, ..

The dependence is such that g satisfies

_%BC.. _Q = 9(QBQT, QCQT,...) _z

0'is the set of all orthogonal tensors.t

The method of finding the most general form of q is as

follows: First introduce an auxiliary second-order tensor

*. Let a = • g(B,C,...). Now a is a scalar invariant of

*
Here we consider only the second-order tensors. But the method
is applicable even for tensors of other orders.

t More generally,(Ois the symmetry-group of the material.
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tensors 4, B, C... A set of scalar invariants H.(O, B, C,...),

j = 1, ...k is called a functional basis if every scalar invariant

of 4, B, C ......... can be expressed as a function of H.,

j =i, ... k.

If _ is a polynomial in B, C, ... , then a is a polynomial

scalar invariant of 4, B, C, .... A set of polynomial scalar

invariants I(, B, C, ... ), j = 1 ... , n is called an integrity

basis if every polynomial scalar invariant of 4, B, C.. .can be

expressed as a polynomial in Ij, j = 1,...,n.

Wineman and Pipkin (1964) have shown that an integrity basis

is also a functional basis.

An integrity basis for an arbitrary number of symmetric

second-order isotropic tensors was given by Spencer, Smith &

Rivlin (see Rivlin, 1969 ). Integrity bases for an arbitrary

number of tensors and vectors and for the case in which the

symmetry-group is not the group of all orthogonal tensors was

given by Spencer, Smith, Rivlin, Adkins and Weyl (see Wineman

and Pipkin, 1964 ).

Once an integrity basis for the tensors 4, B, C,... has

been found, the elements which are functions of B, C, ... alone

are singled out. Call these I , y = 1,...m. (These form an

integrity basis for the tensors B, C,....) Then the elements

which are linear in 4 are selected. Each such invariant is of the

form .jf. ,.... ), 8 = ,.... en

g FS(il, I2 ... I )f ( 8 (B, C,...)
8=1 2 =•

Applying this method to (3.2) we find that
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(3.3) f(B) = f 0 1 + f 2 B 2  ,

and

(3.4) K(s,B)G(s) = tr[(4 0 0 1 + 01 B + B2 )G(s)i

+ tr[(4 1 01 + 011i
B + 012 2)G(s)]B

+ tr[(O 2 0 1 + 21 B + _22 2)G(s)IB2

+ (03 01 + 31 B + 32B2 )9(s)

+ G(s)(4301 + 31 B + 032 B

where the fi are functions of the three principal invariants1

of B, I=trB, II = [(trB) - trB 2], IIIB BdetB, and the

ij are functions of the same three invariants and the time lag

S = t - T. The isotropic form of r(sl,s 2 ;B)G(sl)G(s 2 ) is lengthy

and will not be given here (see Dixit, 197).

The forms of the stress which perturb the natural state

have a simpler structure than the forms (3.3,4) which perturb

states of rest (elastic deformation). The natural state is a

state of rest in which the body is undeformed and unstressed

so that G(s) = 0, B(t) = 1 and $1,0] = 0. To compute stresses

relative to the natural state it is convenient to expand the

tensor functions of B(t) in (3.2) into a series of powers of

the perturbation tensor

(3.5) b(t) = B(t)

This procedure reduces the problem of finding the most general

isotropic forms of (3.2) to a problem of finding isotropic

tensor coefficients for multilinear forms. At the end of the
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analysis one finds that

(3.6) f = Sb + 8 1 1 l1 trb + a2] bb + a1311 (trb) 2

+ (411 tr(bb) + [ 5 ] (trb)b + O(I213).

(3.7) K(sB(t)G(s)= (s)G(s) + [i]i trG(s)

+ C[2] (s) {b(t)G(s) + G(s)b(t)}

+ C[3] (s)G(s) trb(t)

+ C [4] (s)b(t) trG(s)

+ C[5] (s)l[trb(t) ] [trG(s)]

+ C[61 (s)l tr[b(t) G(s)]

+ O(jb[ 21g,

and

(3.8) =FsI'S2'B(t)G (Sl)GC'(s2)=a (SI'S2)G(S)Gs2 )=

+ all] (sts, 2 ) [trG(sl) [trG(s2 )H

+ a[2] (sts, 2 )! tr[G(sl)G(s 2) ]

+ a[3 1 (sts, 2 )G(sl)trG(s 2 )

+ a [ 4 ] (sils 2 )G(s 2 )trG(sl)

+ O(Ib 1GI2 )

When the solid is incompressible the density is a constant

and
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(3.9) det F =1

In this case the stress is constitutively determined only up

to a scalar field p

(3.10) T=-p 1 + _w) 's]

s=0

The scalar field p is an additional unknown and (3.9) is the

additional equation necessary to determine this field.

The forms of _perturbing the rest state and the natural

state are the ones already derived for the compressible case

with two differences. The first difference is that all the

terms in the expansions (3.3) through (3.8) which are proportional

to 1 may be grouped with p. We may regard the new coefficient

of 1 in T as a new "pressure", say Tr, which is constitutively

indeterminate and is to be determined ultimately from the

solutions of the equations of motion. So in the incompressible

case we take the forms of 'given by (3.3) through (3.8)

modulo terms proportional to 1. A second difference between

the stress in the compressible and incompressible case arises

as a consequence of (3.9). This second difference will be

discussed in 57.
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4. Equations of motion for the perturbations of the natural state

In solid bodies the natural state is important because the

elastic stresses are measured relative to the undeformed, un-

stressed state of the body. So if t is the traction vector on-n

the boundary 3V of the region of space occupied by the deformed

body, then

(4.1) f t da sTN dA

where 0 is the region occupied by the undeformed body and N

is the outward normal on V0V; n is the outward normal on a)

and

(4.2) n da =det F (T)-I-N dA

The Piola-Kirchoff stress ST is given in terms of the Cauchy

stress by

(4.3) ST = TT (fT)- det F = TT) det F

The balance of momentum in any small part of 4 (also

calledV) may be written as

(4.4) Pu dV = bdI) + t n da

where b is the body force per unit mass,

(4.5) u- x -X
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is the displacement vector of the partical X,

2 2u=2 (ut)/3t 2

the acceteration, is a derivative following the particle (at

fixed X). In a loose notation, we use the symbol u(x,t) and

u(0,t) for different functions whose values u are identical when

X is the particle presently in the place x. The density : (x,t)

in (4.4) is related to the density p of the same particle in

the natural state by

(4.6) c (X) = p (x,t) det F(t)
0

Eq. (4.6) implies

(4.7) PdV = o0 dV

Inserting (4.1) and (4.7) into (4.4) we find the Piola-Kirchoff

equations of motion

(4.8) PO ( X ) ( X ' t ) = Po bXt) + div sT (x,t)

Solutions of (4.8) are driven by the prescribed data:

the force field b, the boundary conditions and the initial his-

tory. Our purpose is to develop an algorithm to compute solu-

tions of (4.8) which perturb the zero data giving rise to the

natural state. And in the usual way we serve our purpose by

requiring that the prescribed data be proportional to a small
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parame:ter c so trhat srlut ons of (4.8) with / 0 r,:.he, to

the natural state ir. which ii an(' S botn v2n!2: wvn h- 0 . ,or

exarple, we may say that tl'e deformat ions are dri\vn L !D (. ,',t

&(X,t) . Naturally the conputation of fields at 0 means

that the perturbation prohic,.s arc all posed on the do: ain

of the natural state. It is perhaps of interest to rc,..irk that

our method of solution introduces the natural state aut.omatical] "

through the data and there is no particular advantage gained

by starting with the Piola-Kirchoff tquations of motion. We

arrive at exactly the same equations of motion if we start with

Cauchy's equations. In fact, it is more natural to prescribe

conditions on A), the boundary of the deformed body, than on

al) the boundary of the body in the natural state.

Turning now to the aforementioned boundary conditions we

declare our interest in boundary value problems of the mixed

type. In specifiying "mixed type" boundary conditions we decompose

the boundary of the deformed body into two parts.

(4.9) a) (t, ) = (t,E) U) ;V 2 (t,)

where the deformation is prescribed on Vl(t,E),

(4.10) x fVl(t,E) is prescribed

and the traction vector is prescribed on D2(t,E)

(4.11) T'n(x,t,t) = t n(xt,e) is prescribed for

x f aV2(tc) where t (x,t,O) = 0
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The attentive reader will notice that the prescription of the

traction vector in (4.11) is given in terms of the Cauchy stres%

rather than the Piola-Kirchoff stress. We have already noted

that in our local theory the distinction between the Cauchy and

Piola-Kirchoff stress is downgraded because both forms lead to

exactly the same perturbation equations.

In the same spirit it is convenient to prescribe displace-

ments of the boundary V 1 (t,E) of the deformed body where for

simplicity we require that

(4.12) x - X = ZU(X, t, C), X e V2i0' _ X ,

where

A)10 = 2i (t,0)

is a portion of the boundary

IV 0 N10 U 3V 2 0

of the body in the natural state. Of course Vl 0 and ;20

are independent of time. Equation (4.12) says that the set of

boundary points for which displacements are prescribed is a

material set and no new material points, points on a%2 0 , can

enter this set as c is varied.

To complete the prescription of the data for the initial-

history problem we prescribe the initial history

uO(X,t) is prescribed for X fb% 0, t < 0

and

(4.13) u(X,t,e) = £u0 (X,t) for X t < 0
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5. Kinematics for perturbations of the natural state

In our perturbation we develop a sequence of equations

which may be systematically associated with a perturbation of

data giving rise to the natural state. The data is all im-

portant and when we perturb it we induce a perturbation of

the kinematics as well as of the constitutive equation. The

perturbation formulas for the kinematic variables are easy to

derive. Only the results are listed below.

<i> 2 <2> 3(5.11 u(X,-t,s) = u (X,-r) + E u (x,r) + 0(s

= -Vuxt=+ F< I' 2F<2>

(5.2) F(X,T,E) +Vu( + E_ (X,T) + F (X,r) + O( 3

where

F <n> <n> n>

Fn (x,T, E) = Vu n (X,t) (F.. = u. / X.)

(5.3) F - I = 1 - F < > E + (-F < 2 > +F < 1 > F <>)c2 + 0(£ 3

tT <t 1(t2G<2> 3)

(5.4) G(s,E) = F T(t,C) (T ) - 1 E G <l>(s) + E G-- (s) + 0(C

where

G< I > (s) 2{E < I > (t-s) - E< I > (t)}

G < 2 > (s) = 2{E<2 > (t-s) - K < 2 > t + 2>(t,s)

E<n> 1 (F<n> FT<n>

3
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and

Tp<2F<> T<I>

<2(t,s) FT<l (t-s)F" "(t-s) + F (t) (t) - 2F (t)El> (t-s)

+ F i (t)F (t) + F T< i (t)E T < I > (t) - 2E (t-s)F (t).

(.) Btc = t,)FT <1> 2 <2> t) <11 Tel-
(5.5) B(t, ) =F(t,)T(t,<) =1 + 2EE (t) + 2{2E< t) + F (t)F t)}+ 0(C-

(5.6) det F = 1 +Etr F< 1 +2{"tr F<2> + 1[tr <I>] 2 - I trLF F<l>] + 0(E 3 )

<1> 2 <2> 3p (x,tc)=p (x)+eP (X,t) + p (Xlt)+ O(C

00

Since p0 is independent of c we may expand p det P = p in powers

of c. Identifving independent powers of E we find that

<1i> <1i>
(5.7) p + p tr F = 0

and

<2> <1> <1> <2> Po 2 oo <1> <>

(5.8) p +p trF +P trF + _ [TtFr ]- <t[F 1 = 0

We shall also need a formula for the pertrubation of the

normal

(5.9) n = N + en<1  + 02()

< 1>To find n we write J = da/dA and

-~ T-1
nJ = det F(F -. N
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Combining (5.3) (5.s), (5.9) and J I + C + 0(E 2) we get

n<1 > + N 1  (det F< 1 >)N - FT <1>. N

Since n is a unit vector, N-n = 0 and

J<l> = det F < I > - N.FT <1>.N

Hence

(5.10) n <1> = (N.F T <1>. N)N _ FT< >.N

Using (5.10), we may write prescribed conditions for the
traction vector t (x,t, ) for x e aV 2 (t,') in terms of per-
turbed Cauchy stresses T<n> (X,t) for X Ea 20 . Thus

(5.11) t T-n = (cT<1> + E 2T< 2> + ... )*(N + n< > +-n .

= <1> N + 2 (T<2> N + T<I> .n< 1 > )+(33

T <>N ( 2(T<2> T<1> FT<l>)-N

+ (N-FT <1>.N)T <1>.N) + 0(c3
-<n>

gives the series expansion of t on av in terms of T and-n 2
geometric quantities defined on 3V20
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6. Canonical forms for the perturbation stresses and equa-

tions of motion for compressible solids

The canonical forms of the Cauchy stress for perturbations

of the natural state

<> 2 T<2> 3)

(6.1) T = T < I > + E 2T + 0(3

can be obtained by identification by combining (3.2, 6, 7, 8)

with (5.4) and (5.5). We find that

<1><1> df <1> Il1

(6.2) T l(t) =I M=u l>() e 2 E<I(t) + 2 [1div u<l ti

+ f0{ (s) 2 [E<l > (t-s) - E<l>(t)]

+ 2 [I ] (s) div [u< >(t-s) - u<>(t)]1}ds

and

(6.3) T<2 > < 2> <1>(6 3 T T[U< ]+ __I

where

1> df 1>_T<1> [1] trF<> FT<>

+ C(S)0 2 > (t,s) + 1[ (S) trL< 2 >(t,s)}ds

+ 8(2 B< 1 > B <1> + 1 0[3) (tr B< >2

*0(4)1 rI <1> B<1> + -5 1>t <+ [B ] tr [ .. . ] + _ tr S I
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+ J{C[2] (s)[4 1 (t)g > (s) + G'> (s)B' (>)l

+ C (s) G (s) tr B<l(t)+[4] (s) B (ttr G< (s)

[5] <I >  (1< >

+ [5] (s) 1 [tr B< > [tr G (s)]

+ [6] (s)l tr [B< 1 > (t)G<l > (s)] }ds

+ {a(slS 2 ) < 1> (sl)G< 1>(sI  = (s 2 )

(1] 1> <1>

+ a (sls 2 ) 1 [tr G<  (s I )][tr G< .(s 2 H

+ [2] (sls 2 ) tr [G< 1 > (s ) G<l> (s 2)]

+ a[3] (ss 2 ) G<> (s) tr G< l > ( s

+ a [4] (sls 2 ) <I> (s 2 ) tr G'> (s I ds I ds 2

The Piola-Kirchoff stress tensor is now given by (4.3),

(5.3), (5.6) and (6.1,2,3) as

(6.4) S <  + 2T <
- T <  + T tr F < I  + ()

To characterize the motion of a particular compressible

viscoelastic solid at first order we need values for

2 elastic constants 8 and 8 [1]

and

2 material functions c(s) and 1 (s)
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To characterize the motion of a particular compressible

viscoelastic solid at second order we need values for

In]6 elastic constants ; [n, n = 1,2,3,4,5

and

12 material functions c(s); c[n] (s), n = 1,2,3,4,5,6;

(Sls 2 ) and a [ ] (Sl,S 2 ) , z = 1,2,3,4 . Obviously, the

rheometrical problem of material characterization in the

second order theory of motions of viscoelastic solids per-

turbing the natural state is very hard because there are so

many material functions and constants.

We have seen that the expansion of u(X,T,E) in powers of

e ultimately induces an expansion of the stresses T and ST in

powers of c. The expansion of u(X,T,E) for X FE was pre-

sumed given, but it is not given; it must be determined from

solutions of the equations which perturb the natural state.

The perturbation of the data driving the motion is given and

it induces the expansion of all the other interlocked quanti-

ties.

The equations which perturb the natural state arise from

(4.8), (4.11), (4.12), (4.13) with b = E.& by identification

when all of the variables are expanded in powers of e. The

expansion of the stress is given by (6.1-3) and the expansion

of the kinematic variables by (5.1-11). At first order

P <1> . i + div L 1 for X eV0O, t > 0
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<i> (Xt) is prescribed for X3 I0 , t > 0

<> (Xt)N tn <>(X,t) is prescribed for X .D20 ' t >0

(6.5)

u (X,t) is prescribed for X o, t < 0

For orders n > 1 we find that in V0 and for t > 0

(6.6) P "'<n> = div t [u<n>I + terms of lower order
0-

where

u<n> (X,t) is prescribed in terms of lower order for

X C 48 1 0 ' t > 0

T<n> (X,t)-N is prescribed in terms of lower order

for X & V20' t > 0

and

u<n> (X,t) = 0 for X raQ 0 ' t < 0

For example when n = 2, the terms of lower order in (6.6)1 are

(6.7) div{,[u<'4 I - T< I > FT < I > + T< I > tr F<  .

The perturbation equations can be solved sequentially and

at each step of the sequence there are three equations for the
<n>

three unknown components of u .
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Changes in density due to deformation may be expressed

by (5.7) and (5.8). Similar formulas hold at higher orders.

The practical utility of a theory which requires knowing

the value of 6 elastic constants and 12 material functions is

debatable. Pipkin (1964) noticed that there is a big reduction

in the number of unknown material parameters when the material

is incompressible.
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7. Canonical forms for the perturbation stresses and equa-

tions of motion for incompressible solids

Incompressible solids have been discussed in §3. We

have already explained that in the incompressible case we

may group all terms of

T= - P1 + '_ [B(t),G(s)
s=0

which are proportional to 1 with -p. The _ part of T is con-

stitutively determined while the spherically symmetric p!

part of T is to be determined from the equations of motions.

So one simplification in the form of 5 comes from dumping

terms of (3.6,7,8) proportional to 1 into-p. A second simpli-

fication comes from setting det F = 1 in (5.6). Then

(7.1) tr F< I > = div u< I > = 0

and

<2> <2> 1 <1> <1>
(7.2) tr F = div u =T tr[_ F .

It follows from (5.4), (5.5) and (7.1) that

(7.3) tr > (s)=tr B<I> = 0

and from (5.5) and (7.2) that

(7.4) tr B< 2> =2 div u<2 + tr[E< >TJ

=tr[<l> F <
> + E<1>FT<I>
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and from (5.4) and (7.2) that

(7.5) tr G< 2 1s)=2 div u<2, + tr <2> (t,s)

= tr[F<1 > F <> + tr E<2> (t,s)

where U-" is a jump operator on whose dcmain are functions

a of t.

def
[[al = a(t-s) - a(t)

The perturbed stresses are given by

<1>. <1> <1> <1>

(7.6) T =-p 1 + 28E <  (t) + 2 C (s) E Jds

<1> I> 1>= -p 1 + 2yE <  (t) + 2 j (s)E <  (t-s)ds

where

(7.7) Y = 8 - fC(s)ds

and

<> <2> -2 2

(7.8) T = - 1 + 2yE 2> (t) + 2 J (s)E<2>(t - s)ds

<i> Tc>l IG+ F T < l > + 0 12 1B< 1 , B1> J(S)_t2> (ts)ds

+ [21 (s) [B 1 > (t)1 (s) + G< > (s)B 3> (t) ds
+ - 3
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(7.8) + Jf f a(Sls 2 )G<'> (sl) G<> (s2)ds I  ds 2

0

where

(7.9) n = p - 8 tr(F F + F )>FT< - 8 tr[B B

11 (s) ftr [ F<1 F< + tr < >(t,s) Ids

- [ 6 ] (S) tr[B<l>(t)G<l>(s)]ds

- fJ [2( 2) tr [< 1>(s)< 1 > (s2)] ds1 ds 2

To characterize the motion of a particular incompressible

viscoelastic solid at first order we need values for

1 elastic constant 8

and

1 material function 4(s)

To characterize the motion of an incompressible solid at second

order we need

2 elastic constants 8 and 8
[2]

and

3 material functions (s), C2] (s) and a(sls 2 ).

<2> ;

The material constants appearing in 7 are constitutively un-

determined since 7 <n> is to be determined as one of the four

unknown fields in the canonical problems governing the perturba-

tion displacements. -532-
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Turning next to these canonical problems we find that

(7.10) + vp< = 0 , div u = 0 in , t > 0

u (Xt) is prescribed for X C t > 0

tn I = IN is prescribed for X > 0 

u (X,t) = u 0 (X,t) for Xe , t < 0

In (7.10) and elsewhere

def . 2 2 00

(7.11) P() de (  - 2 - (s) (-)(t-s)ds

At second order

(7.12) u<2> + <2> M2 div u< = 02 in ,0 t > 0

<2> > 0
u (X,t) is prescribed for X e I0' t > 0

<n2 > = T <2>. N + T<l>. n < > = (,T< 2 > - T< I > F T < I > ) - N

+ (N-FT<l> N)T<> N is prescribed for XC al 2 0 ,t>O

and

u < 2 > ( x ,t) =0 for X t < 0.

In (7.12)

*Henceforth, we neglect the body force.
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1 <1> <1>
02 = tr[F l

and

(7.13) M FT<I>Vp < > + div {a[2] B<1> B<1>

-12 =dT- 
I

+ J(s) [-G<l>(s) <1 (t)+2 FT < I >] E<l>(t-s)]ds

+ [2](s) [B (t)G<l>(s)+ G<l>(s) Bl(t)]ds

+ IJWCL(sis 2 )G <>(sl) G <>(s 2 )dsl ds2 }

0 0

In deriving M2 we made use of the identity

VtrF F = div {F F

<1>

which holds whenever div u = 0 . Many terms in the expression

div WT<2> - T<1 > FT<l> } vanish.
<n> <n>

At every order n > 1 we find that u n v and n

satisfy

(7.14) Jv + V n = fl(Xt)
} for XE ' t >0

div v = f 2 (Xt)

v(X,t) = f3 (X,t) for XC9I 0 , t>O

(-i + 2 y Evl(t)] + 2 00 (s)E[V(t-s) ]ds) *N

JO

f4 (X,t) for X0 t > 0
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v(X,t) :f 5(Xt) for X E , t < 0

1
where E[v(t)] : 2 (Vv(X,t) + transpose) and the right hand

sides of (7.14) are known from the prescribed data and lower

order solutions. At each order we must solve four equations

for the fields v(X,t) and (X,t) in " 0 "
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8. Stability and uniiueness of solutions of the canonical

equations perturbing the natural state

The main aim of this section is to show unique solvability

for the sequence of perturbation problems (7.14) for incompressible,

viscoelastic solids. We do not consider the problem of existence,

however, and restrict ourselves to a discussion of uniqueness

and the related problem of stability. It is probable that an

existence and uniqueness theory of the type recently given by

Slemrod (1977) for Joseph's (1976) theory of motions which

perturb the rest state of simple fluids can be adapted to the

present problem. But here we follow a different path.

To motivate the analysis we remind the reader that the theory

of slow flow of Navier-Stokes fluids is a relatively uncomplicated

subject because when the flow is slow (or the Reynolds number is

small) there is just one solution in the long run and it is

uniquely determined by the boundary conditions and body forces,

independent of initial conditions. The unique solution is globally

stable in the sense that all disturbances, small or large, of this

solution ultimately decay. So we expect to observe in nature what

we calculate from the equations when the flow is slow. And we do.

But this simplicity is lost when the flow is not slow because

there are many solutions for prescribed boundary conditions and

body forces and many of these are unstable.

The situation of viscoelastic fluids and solids is not so

different. In any event, when the forcing data is small, the

rest state or natural state is stable in the linearized approximation

provided only that material parameters and their derivatives have
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the expected sign For larger forcing data the problem of

stability is probably at least as complicated as in the Navier-

Stokes theory. In fact, viscoelastic materials can exhibit shock-

ups and loss of existence of smooth solutions without parallel

in the Navier-Stokes theory.

Of course, stability can never be asserted on the basis of

linearized equations alone because linearized equations do not

govern the evolution of large -isturbances. So our statements

about stability are at best conditional, subject to the restriction

that disturbances are sufficiently small. In fact, since conditional

stability theorems are not known for viscoelastic materials,

it has to be assumed that the analysis of the linearized equations

applies to the nonlinear equations when the nonlinear part is

small.

The linearized stability problem for the stability of the

natural state may be obtained from the linearization of the

initial history problem (4.8), (4.11), (4.12), (4.13) and (3.9)

for an infinitesimal disturbance v of u ! 0:

}+ = for X Vot > 0;

div v = 0

(8.1) v(X,t) 0 0 for X e-'Q0 , t > 0;

{-wl + 2yE[v(t)] + 2 f ,(s) E[v(t-s)]ds} N
0

= 0 for X GV20' t > 0;

v(X,t) = y0 (X,t) is prescribed for X e 0 and t < 0.

We are interested in finding the conditions under which v - 0 as

t

The problem (8.1) is identical to the problem which governs
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the uniqueness of solutions of the initial-history problem (7.14)

if y0(X,t) is set to zero. To study uniqueness we consider two

solutions of (7.14) with same prescribed data and initial histories.

The difference between these two solutions satisfies (8.1) with

K0(Xt) = 0.

Uniqueness theorems for linearized initial-history problems

for viscoelastic solids under slightly different conditions and

constitutive assumptions have been given by Edelstein and Gurtin

(1964), Odeh and Tadjbakhsh(1965), Gurtin and Sternberg (1962),

Breuer and Onat (1962) and Onat and Breuer (1963). If v = 0

is asymptotically stable then the solution v = 0 corresponding

to a zero initial history is automatically unique. On the other

hand uniqueness for the initial history problem does not imply

stability since new solutions with v 7 0 may arise from the loss

of stability of v = 0. Loss of stability is associated with the

evolution of disturbances, new initial conditions, which are the

inevitable results of fluctuations in the prescribed data.

Unique solvability is intimately connected with stability and

has almost no relation to the problem o'f uniqueness of the initial-

history problem. In the present circumstances unique solvability

comes down to a verification that Z is uniquely invertible, and

new solutions with v 3 0 cannot bifurcate.

Existence, uniqueness and asymptotic stability of generalized

solutions of equations like ours have been given by Dafermos

(1970) for problems in which displacements are prescribed on the

entire boundary 0 of 'V0. In the problem treated by Dafermos

the vector field v is not necessarily solenoidal and 7r = 0.

Our problem can be reduced to the one considered by Dafermos by

projection techniques used in mathematical studies of the Navier-
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Stokes equations (Fujita and Kato, 1964 ; Ladyzhenskaya, 1963).

In this method one introduces a Hilbert space H of vectors with

scalar product

<a,b> =f a(X) • b(X)dt)

and norm iall = <a,a>1/2 by completing the C(V,0 ) vectors with

compact support. The compact support is natural for problems

like the one which governs v when 3 so that v = 0

for X ECV \ 0, in which the function is prescribed to be zero

on the boundary % of V0 . For such problem it is possible to

decompose H into orthogonal subspaces of solenoidal vectors(H1 )

and gradients(H 2 ) ,H = H1 0 H2. There is then the orthogonal

projection J which commutes with T and annihilates gradients.

So we get

JP v = 0 in 0 , t > 0;

0(8.2) /V=0 for XE )QO, t > 0;

V = f y0 is prescribed in A?,, t < 0.

This problem, (8.2), falls in the frame' of the study of Dafermos

(1970) who shows that <v,v> (t) + 0 and <Vv,Vv> (t) 0 provided

that

1. 8> 0

2a. C, Z e C (01-) L [0,o)

(8.3) 2b. C(s) < 0 for s E [0,1)

2c. Z(s) > 0 for s e [0,-)

2d. does not vanish identically
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The conditions required by Dafermos for asymptotic stability

do not disagree with conditions which rheologists would require

on physical grounds using experience and intuition.

The conditions on ( and (s) derived by Dafermos are the

desired conditions which guarantee unique solvability of (7.14)
when displacements are prescribed over all of lW, I=3 0

220 = 0) We therefore turn next to the mixed problem using

elementary methods in which the source of restrictions on B and

t(s) will be easy to interpret.

We start by deriving a spectral problem for solutions of

(6.1 ) using the method of the exponential time factor:

at
v(X,t) = e v(X)

(8.4)
at

r (X,t) = e rr (X)

where

a = + iW

and a, vi (X) and n(X) satisfy equations obtained from ( ..)

and (8.4).

pa2 V( (a)V2vi M - 97rX

and

9vi/aX i = 0

in VO and

v (x) 0 0 for XE e ),

and
av. av.

+ + K (---L + -)). N. = 0 for X C D
{- ia + t () x +

2 0
J -540

-540-



where

K(a) = 8 + f (s){e-°-l~ds = y + f0z(s)e-°ds.
0

After introducing new variables

2 - 2
K = - K(a)/p a ; T(x) = Tr(X)/P.

we may rewrite the spectral problem as

2v
v + iV + V7 = 0, div v = 0 inV 0

(8.5) v i = 0 for X F 0

av. av.
{Tr6ij +A a + .)} N. = 0 for X E3%)20'J 1• -

Eqs. (8.5) define a spectral problem. We seek the values

of A for which (8.5) has solutions (v,n) y (0,0). The following

properties characterize the spectrum of (8.5):

(1) The spectrum E(X) of (8.5) is a pure point spectrum,

that is, A are eigenvalues of (8.5)

(2) The eigenvalues X of (8.5) are real-valued

(3) The number of eigenvalues is countably infinite. They

are of finite multiplicity, all semi-simple and may be

arranged as a decreasing sequence clustering at zero:

1 >A2 > A3 > • > 0.

If the measure of A).is greater than zero then 1 < Co.
10 A1

Proof: To prove the asserted properties we show that the A.

are the critical points of the functional
<Iv12>

(8.6) X(v[def v
< IA() 5>

-541-

IA

.~~~ ;w.MM



where <'> =f 9 0 (-)d VO0

I2 viviI( (v)A. _

av. av.
A.. (v) 2Eij (v)= +

-ji - ax. ax.J 1

among functions

v E H -v: div v 0, vaII)0 = 0' <l0vx_ ,2> <

Every solution of (8.5) satisfies

2 2A.. (v)
<v, v + Xdiv A(v) + V7> = <Iv 2> + X<v . >

Sax.)

+ <Va > = <lv2 > - A<A (v)Aij (v)>+<i aXi  <v - Aj_ _

+ f 20 v. N. [Tr6 ij + XAi j (v)]dE

<,Y_2> < 2 2>

where the scalar product <,> is as defined before. The

eigenvalues An - A are critical points of the Rayleigh quotient

(8.7) An = max A[vjH
n

where Hn is the subspace of the space H which is orthogonal to

eigensubspaces of the first n-1 eigenvectors. The asserted

properties are all known consequences of the variational character-

ization of eigenvalues (see, for example, Reisz-Nagy, 1955, page

232). The condition measure > 0 rules out the solution

v = const # 0_ and guarantees the existence of a finite least

upper bound for A v], vFH.
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Next, we show that solutions of (8.7) are also the eigenvalues

of Eqs. (8.5). We reformulate (8.7) as

(8.8) A1  max A[v] where
V E- Ix

(8.9) v: 0, A(V) 2> <

(8.10) L[v] {<]vj 2 > - 2<q div v>j/<jA(V)j 2

and

q C C (NO) is a Lagrange multiplier.

Let v 1 be the maximizing function. It satisfies the constraint

div vI = 0. For any lExand any real e
(8.11) d = 2 2> <vl,4> -<q div c>

d- A [=0 IA(vl)1 2 >

- I<A(v I) • A()>} = 0

Hence

(8.12) <Vl, 4_> - <q div A> - A<A(v,) A(4)> = 0

After some integration by parts, we get

(8.13) <(V I +X + Vq), O> - f N [i + 0

Eq. (8.13) vanishes for all C_;, in particular for such that
= 0 on a)20. The fundamental lemma of the calculus of variation

implies that

.+ X1V2v 1 + Vq = 0 in %0

Now f 320 N. (q6iJ + A ij 0 for arbitrary 4.

Hence the boundary condition (8.5)3

[q I + A(V 1 ) • N = 0

arises as a natural boundary condition for the variational problem.
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It follows now that (8.5) are Euler equations for X[v],

v e Tsubject to the constraint div v = O.In a similar fashion

it can be shown that solutions of Eq. (8.7) are also the eigen-

values of Eqs. (8.5). Or equivalently all the eigenvalues of

Eqs. (8.5) may be characterized variationally by Eq. (8.7).

Having determined the eigenvalues A n > 0 of (8.5) we return

to problem of stability of u = 0. In the context of the spectral

problem u = 0 is stable if Re a = C < 0, neutrally stable if

= 0 and unstable if > 0. The determination of the sign

of may be made by analysis of the functional equation

2
P(o) =1/A > 0, a = + iW,

that is,

(8.19) m{8 + ( (s) [e - s - l]ds} = - 2

0

where m = l/(p A) > 0

We need to determine the conditions on 6 and C(s) which will

guarantee < 0 for all m > 0. If there is only elasticity,
2

and no viscoelasticity, (C(s)= 0), then (8.19) reduces to m8 = - a

If 0 < 0 then a = & = + /mjW so that u = 0 is unstable if B < 0.

Hence, for stability a > 0. This is condition (1) of Dafermos.

The other conditions of Dafermos also follow from the analysis

of (8.19). When w = 0, Eq. (8.19) reduces to

(8.20) m{8 + I (s)[e- &S - l]ds} = -

0

If c(s) < 0 for s G[0,-) then > 0 cannot be a solution of (8.20).

>_ 0 makes the left hand side of (8.20) positive but the right

hand side of (8.20) is always nonpositive.

-544- 1



When w 3 0, we decompose Eq. (8.19) into real and imaginary

parts:

m{a + f 0(s)[e- Fs cosws - l]ds} = - (2 2)

0
(8.21)

mfc(s)e- s sinws}= 2 w

If C(s) < 0 for se[0,-) and K(s) - 0 as s-- monotonically

-S5 sinws
then m f W(s)e s sds is negative for r > 0. This is so

0 _-

because C(s)e - Es sinws is negative when s is small, it changes

sign at each zero of sinws and the contribution to the value

of the integral on each interval is of decreasing magnitude. The

negative contributions are therefore larger than the positive

ones. This shows that Eq. (8.21)2 is not satisfied for C > 0.

It is better for understanding to proceed less generally

and to determine the sign of for a relaxation modulus

(8.22) c(s) = -pe - vs , p > 0, v >0

of the Maxwell type. We find that

(i) finite solution of (8.19) and (8.22) have

(8.23) V + > 0 ,

(ii) finite solutions of (8.19) and (8.22) have at least

one and at most three real values of a = a forn

m = i/(o P ? and

(8.24) &n < 0.

We may restate these results as follows: Given 8> 0,

C(s) < O(j > 0), r(s) > 0(v > 0) there are a countably infinite

number of finite solutions a n + iwn of (8.19) and <.0

for all such solutions.
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Proof: Substitution of (8.22) into (8.19) leads to
cc

(8.25) m{8 - Pf [e- (V+)S-e-S Jds} = -
2

0

If v -t < 0 the integral diverges. To prevent this we admit as

solutions only those a for which (8.23) holds. Assuming now that

v + > 0 we evaluate (8.25) as

2
(8.26) -2 = m{ + Po/v(v + a)}.

Eq. (8.26) is a cubic in c which has to be solved subject

to the constraint (8.23). When p = 0, a = + i/im. When p

is small, these two roots split into a conjugate pair with

w O 0. The real and imaginary parts of (8.26) are

(8.27) 2 - - m{W + 1 2 + V+2 }

and

(8.28) 2w - pmw/[(v+C)
2 + W ]

When w 3 0, (8.28) shows that < 0. When w = 0, (8.27) reduces

to

(8.29) 2 + mO = - mVC/v(v+C)

Since v + > 0, (8.29) shows that < 0. When p is small, there

is only one real root of (8.29).

Now we will give a formal argument, based on Laplace Trans-

forms, to show that the criteria C < 0 for all eigenvalues a

in the spectrum of (8.5) implies that u = 0 is asympotically

stable. We first rewrite the problem (8.1) as
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p i - yV 2v - V2 f (s)v(X,t-s)ds - V J (t-T)v(X,T)dT
0 -00

+ Vr = 0

(8.30) div v = 0

v(X,t) o

10

t{-TrI + 2yE[v(t) I + 2r C (s) E[v(t-s)] ds
0

0
+ 2 C (t-T)E[v(T) ]dT} N = 0

20

Since v(XT) = V 0 (X,T) for X CV 0 , T < 0 is known

V2 f C(t-T)V(X,T)dT and 2 f C(t-T)E[V(T)]dT are known.

Let V 2f (t-T)V(X,T)dT 
= fl(X,t)

(8.31) -0

0
f2 f C(t-T)E[v(T)]dT} - N -2

?20
Now we have

P 2- yV V2 f C(s)v(X,t-s')ds + Vn = fl(X,t)
0- 0

(8.32) div v = 0

vx, t) a. 0

10

tf-wl + 2yE[v(t)] + 2 f C(s)E[v(t-s)]ds} N
0ot'I2 0

= f 2 (Xt)

2
Now we assume that v, it, div v, E[v], V- no ' fl and f2

possess Laplace transforms.
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Let

V(Xa) V (X, t)

71 (X,a) 7T (X,t)

(8.33) (o) = a et 1(t)

0m(x I ) f 1IX, t)

2 (Xa) (Xt)

Then we have
F2 2

p a - K(a)V V + V7= F(X,a) +fov(X,O) + (X,0):

div V = 0

(8.34) FV(Xa) a%), 0

20

In deriving (8.34), we have used the convolution property
wA

-at^F F.^

f I I (s)v(X,t-S)ds~e-at dt = (o)V(X,o)
0 0

and
Go -a t ~ 2 F. .

f eV dt = a2V(X,a) -a v(X,0) - "(X,0)
0

Equations (8.34) can be rewritten as

v + XV V + Vp = F 3 ( X,a)

(8.35) div V 4 0

V(XO) =0

{i4 + 2XE[VI) - N FV K (Xa
- 0548
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where

^ 0 2
)

0

A A 2

E 3 (X,a) = [FI(X,a)/p + av(X,O) + ' (X,O)]/a

E4(X,o) = F2 (Xa)/(_p0 a

The spectrum of the linear operator defined by (8.35) is the col-

lection of complex values a = an for which (8.35) is not uniquely

invertible with inverse depending continuously on v0 (X,T), T < 0

through P3 (X,u) and F (X,a). These are the eigenvalues an which

we have already characterized variationally through the functional

equation (8.19). We learned that Rea n =n < 0 for all an when

6 > 0, C(s) < 0 and lI(s)j - 0 as s - monotonically. It

follows that Eqs. (8.33) hold for all such that >

For the other values of a, not in the spectrum of (8.35),

(8.35) is uniquely invertible and

(8.36) V(X,a) F 3(Xa) + S ^ F (Xo)

depends continuously on v0 (X,T), T < 0 through, F3 (X,o), F(X,6)

and matrix-valued resolvent operators' R^ and S. The values

a not in the spectrum are said to be in the resolvent set.

Given V(X,o), we may use Laplace inversion integral to compute

1 i E+iwOA
(8.37) V(X, t) i e V(X, ) do

2i $  e[ + SAF (X,a)]do
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Eq. (8.37) holds for any value of o = +iw for which Eqs. (8.33)

hold; that is for > i Since < 0, we may choose < < 0.

Then (8.37) shows that v(X,t) is asymptotically stable with

exponential decay. Eigenvalues associated with (8.35) appear as

singularities of the resolvent operators R- and S^ . If all the

eigenvalues are simple then (8.37) may be evaluated by residues.

a 0 A

(8.38) v(X,t) E e an[ (X,-) , o)-- 'n
n T

= -
CO

where the coefficients an are functionals of the initial history

_ X C 0)0 T < 0.
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9. Free surface problems perturbing the natural state

Many problems in elastostatics and viscoelastic dynamics

can be solved using the equations derived in '7. From these,

we have selected two problems in which the second order theiry

is required for the computation of the change in the shape of a

stress-free surface due to nonlinear effects of inertia and stress.

Free surface problems are of interest to material scientists

because the distortion of the free surface due to deformation

can be a sensitive mirror into the state of stress and the

measurement of the distorted shape may provide a rheometrical

device for measuring material constants and material functions.

This hope we have for solids is a fact in fluids (see Joseph and

Beavers, 1977).

The problems to be derived here involve distortion due to

deformation in viscoelastic solids which are right circular

cylinders in the natural state. The effects we compute may be

regarded as analogous to Weissenberg effects in fluids and as

in the fluids problem the Weissenberg effects appear first at

second order. The second order problems require that we solve

certain fourth order linear partial differential equations which

in the simplest cases reduce to the biharmonic ones. These

problems are probably best suited to analysis in biorthogonal

series. Solving the problems is a major job which requires

considerable analysis unrelated to the physical problem being

studied here. So we defer the computation of solutions to a

later work and concentrate on deriving the boundary-value problems

which need solving under general circumstances.
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The problems we treat are axisymmetric. Cylindrical co-

ordinates are natural to such problems and it is necessary to

compute the components of displacements

(9.1) x = X + u(X,t,e) = re r(e) + Zez,

where er (0) and ez are a cylindrical basis in the coordinates

(r,e,z) of the distorted configuration, relative to a cylindrical

basis (eR, e_0, esz), in the natural state

(9.2) X = eR(O)R + eZ Z.

The components of u(Xt,E) are independent of 0:

<1> <2> *2 13
r = R + r<I(R,Z,t)E + r<2(R,Z,t)e2 + O(e3 ) ,

(9.3) 0 = 0 + 6<I0R,Z t)c +e2(R,Zt) 2 + O(E 3 )
<IR Z<2>2 3

z = Z + z< (RZ,t)E + z (R,Z,t)E + o(3).

To _xpand u(X,t,E) it is necessary to compute the expansion of

(9.4) er () = eR + e <l> + e{ <2> - e >/2} + O(3

induced by (9.3) The term -e2e R<1> /2 can be regarded as

an effect of "inertia". Combining (9.1,2,3,4) we find that

<1 > 2 <2> 3u~ u + - u +0O(E )

where
<i> <i> Re<> z1>(9.5) u = r IR + R6 + z<e

and
u <2> = (r<2> - <1> 2  2> <> <1>) <2>(9.6) U =-e <  /2 )eR + (Re<  +I r<  0 ) + z<  eZ -

The components of F<1 > in the basis (e are

r<1> -<1> <1>
R z

(97) - <1I > <I> 1>
(9.7) |F =(R6>) r /R RO<

z <1> <i0 1>
zR z
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Here and elsewhere )R and () Z denote partial derivatives of

() with respect to R and Z respectively.

The computation of components in a cartesian basis is

slightly less involved because "inertia" terms are absent.

To proceed further it is necessary to be more specific

about the two problems under consideration.

(I) Distortion of the cylindrical free surface on a

viscoelastic right circular cylinder induced by

torsional oscillation of rigidly bonded end plates

'A right circular cylinder of viscoelastic solid material

of radius a is bonded to rigid parallel plates separated always

by distance 2. The plates may rotate around the axis of the

cylinder in a more or less arbitrary manner. The natural state

is sketched in Fig. 9.l.a and the distorted shape is shown in

Fig. 9.1.b E, I = +Q

PID~r-

Fig. 9.1 A viscoelastic cylinder is sheared by the
rotation of two end plates: (a) is the natural
state

0 = {R,Z: 0 < R < a, -1 < Z < 1)

and (b) is the deformed state

= {r,z: 0 < r < (a,Z,t,c), - < z <

def
where h(a,Z,t,E) = r(R=a,Z ,t,c) is the radial
displacement function given by (9.3) 1 .
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Conservation of volume in the deformed incompressible

viscoelastic solid may be expressed through the requirement that

1 1 2(9.8) 2 K(a,Z,t,c)dZ = a
-1

The displacement boundary condition are as follows:

(9.9) G(R, +1,t,e) = +cf(t) + 0

r(R, +l,t,c) = R

It follows then that

(9.10) r<n> (R, +l,t) = 0, n = 1,2,3...,

8 <>(R, +l,t) = +f(t)

and

e (R, +l,t) = 0, n > 2.

The stress on r =tP(a,Z,t,) must vanish.

If f(t) = 1, the cylinder undergoes a steady displacement

and the problem falls in the class of universal deformations in

nonlinear elastostatics found by Rivlin (1949). These deformations

are independent of the constitutive equation provided that the

material is undergoing elastic deformat'ion; then, globally,

without perturbations we get

(9.11) r = R, z = Z, 6 = 0 +cZ.

So the free surface will not change shape under a static twist.

The distortion shown in 9.1.b is entirely dynamic in this (but

not other) problems.

Now we shall solve the equations (7.10) governing the first

order perturbation
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<1> <1> <1>
p r z 0,

(9.12) <i>
6 (R,Z,t) = f(Z,t) is independent of R.

Then (7.10) reduces to1

POR = L{V2 (R)) - /R} = RL(2 /aZ
2

where

def
(9.13) L()d= y(') (t) + f C(s) (' (t-s)ds

0

so that

2^ 2o = 2()/Z

(9.14)

p(+l,t) = +f(t)

All other conditions on the first order perturbation are satisfied

identically when (9.12) and (9.14) hold; in particular

<1> <1>
T N = T •eR = 0 on R = a where

(9.15) T = 2L(E I > ) = ( e Z + ez ) RL( 4/3Z)

To solve the second order perturbation problem we must

compute the inhomogeneous terms in (7.12). All of these terms

may be computed from

0 4 0

(9.16) <I>I = 0 0 Ra/aZ

.0 0 0

and

<2> <2> 2 2> <2>
(9.17) u = - RO2/ 2 )eR + RO + z Z

using the expressions given in §5.

The equation (7.12)2 expressing the conservation of volume

simplifies to

(9.18) 1 a(Rr< 2 >) a z<2 >

RDR + - - 0
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because the term proportional to ¢2 in (9.17) cancels 02
<1>

To compute M12 in (7.13) we need only to note that p = 0

and the rest follows from simple operations with (9.16). We find

that the components (M2R' M20 and M2 Z) of M2 are given by

(9.19) M2R a -[2]R'2 (t)

+ R f C(s) {[["(t-s)[]j + d(t)Ic$I}ds
0

2R I C(s) 12] 0(t)[O']ds

0

- R I I a(S1 ,S2) [4<(t-s l) - n't)]
S00

([€(t-s2) - 4'(t)]dsldS 2  ,

M20 = 0,

M2Z [ ¢22 [V 2(t)] + I (s) ( Vds
0

+ 2R2 f C[2] (s) [0'(t)[ 'J]'ds
0

" R 2 f f' C(s I S2 ){ [ (t-sI ) - C(t)I
0 0

['(t--s2) - 4(t)I}'ds1 ds 2

where prime denotes partial derivative W. r. t. Z. The

R, 0 and Z components of (7.12)1 may be written as

<2> <2> 2<2> <2> 2
(9.20) P0  p0R 4 /2 =- a<2>aR + L(V r - r /R2)

- L(R[0']') + M2R ,

2<> <2> <2

(9.21) pRe< = L[V 2(R8 )- <2> /RI]

and
<2> - <2> + 2<2> .

(9.22) pa /Z L(V Z + M2z

The displacement boundary conditions are
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<2> = <2> <2>

(9.23) r (R, +1, t) = (R, +1, t) = z (R, +1, t) = 0.

To form the stress boundary conditions (7.12)4 we note that
> T<I> T < I>

(9.24) N = eR, T< I > N = 0, T _ • N = - R L( ')e Z

<2> < 2>
T is given by (7.8). To compute T • R we note that

1 2> <2 [V>U + (u < 2 >  I and using (9.17) find

<2> 2 <2> <2> <2> -)
2r< - Re r +z -R,':R R Z R

[<2>] <S2> 2< 2,)R- 2  <e2>

< <2> 2> <2>

rz  +zR -R¢" ReZz

so that

2E <2> = 2r<2> + RO 2> <2> <2>,(9.2) .E e R  <2 eR  e e + (r Z  + z R  )e Z

- R R R R -O z R -Z

- 2R + R¢¢" e z

The emaiing ermsof <2>

The remaining terms of T .eR are formed from simple manipula-

tions using (9.16)
(26 T<2> <2> 2

(9.26) T e< R tR {-< + 2 + f C(s)J>$ 2-ds}
0

co

A 2>
+ ez{R f C(s)0'(t-s)jq]ds} + L(2E < e R )

0

<2> <2> + <2>
eR[-r + L(2rR<)] + R

^ <2> <2>
+ ez{L(r 2  zR ) RL()} .

Combining (9.24) and (9.26), we get

(2> - <2> <2> ^ <2>

(9.27) < e[ + L(2r R  )] + RL( 6 R )

+ e z L(rz<2> + ZR<2 > = at R =a.
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We note that the equation (9.21) governing <2> is homogeneous

(M20 = 0) with homogeneous boundary conditions [equations(9.23)
and (9.27)]. Hence 6 < o. To find r and z , we must

solve (9.18), (9.20), (9.22) subject to the boundary conditions

(9.23) and (9.27).

(II) Distortion of the plane surfaces perpendicular to

the axis of viscoelastic cylindrical annulus rigidly

bonded at the inner and outer radii and undergoing

torsional oscillations at the inner radius

A right circular cylindrical annulus of viscoelastic material

of inner radius a and outer radius b is rigidly bonded at both

the radii. Its initial length is 2. Both the radii remain fixed

during the motion. The rigid rod to which the annulus is bonded

at the inner radius rotates around the axis of the annulus in a

more or less arbitrary manner. The natural state is sketched

in Fig. 9.2.a and the distorted shape is shown in Fig. 9.2.b.

9-C

(a)
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t ,C -R

r~Rod

(b)

Fig. 9.2 A viscoelastic cylindrical annulus is sheared by the
rotation of the rigid rod, bonded to the annulus at
the inner radius: (a) is the natural state

V0 = {R,Z: a < R < b, -1 < Z < 1}

and (b) is the deformed state

V\)= {r,z: a < r < b, Zr(R,-l,t,e) z < -. (R,l,t,E)}

def
where 1(R,+l,t,) = z(R,Z = +1, t,s) is the axial
displacement function given by (9.3) 3.

Conservation of volume in the deformed incompressible visco-

elastic solid may be expressed through the requirement that
b

(9.28) f b (R,l,t,E) - 1(R,-l,t,E) RdR = (b 2 -a 2)
a

The displacement boundary conditions are as follows:

(9.29) e(a,Z,t,e) = £k(t) + 0

e(b,Z,t,e) = 0 ,

z(R,Z,t,c) = Z at R = a & b

It follows that
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<1>

(9.30) 9 (a,Z,t) k(t)

e<n(a,Z,t) = 0 for n > 2

8 <n b,Z,t) = 0 for n = 1,2,3...

Z <nR,Z,t) = 0 at R = a & b for n = 1,2,3...

The stress on z = (R, +1,t,c) must vanish.

Now we shall solve the equations (7.10) governing the first

order perturbation .

<1> <i> <1>
(9.31) p = r z = 0

<1>
8 (R,Z,t) = O(R,t) is independent of Z.

Then (7.10) reduces to
= ^ 2___2 1 3(R ) 6

(9.32) P L[ 2(RO) - /R)]= L+ + 3R -0 R 2  R 3R R]

O(a,t) = k(t)

0(b,t) = 0

where L(.) is as defined by (9.13). All other conditions on the

first order perturbation are satisfied identically when (9.31)

<1> 1and (9.32) hold; in particular T< I N = T< - e Z 
= 0 on Z = +1

(and T T<>. N = - -T" e = 0 on z = -1) where

(9.33) T< I > = 2L(E < I > ) = (eRe + ee) L(R3p/;R)

To solve the second order perturbation problem we must

compute the nonhomogeneous terms in (7.12). All of these may

be computed from

0 0
(9.34) [F I

4+Rad,/aR 0 0

0 0 0
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and
<2> (<2> < 2>

(9.35) u = (r<  - RO2/2)eR + R6< 2 > + z< ez

using the expressions given in §5.

The equation (7.12)2 expressing the conservation of volume

simplifies to
<2> <2>

(9.36) 1 9(Rr< 2 > ) + 0R DR DZ
2

because the term proportional to 2 in (9.35) cancels 62"
<1>

To compute M2 in (7.13), we need only to note that p< 0

and the rest follows from simple operations with (9.34). We find

that the components (M2 R' M20, M2Z) of M2 are given by
= d .r [2] 2

(9.38) M2 R - { c(t) + f C(s)[c(t-s) Ec+a - c(t)[clds

+2 (2]
+ 2 f 0 () [(c(t)c I ds

+ a (SilS 2 ) [c (t-S l)-c (t) ]
0 0

[c(t-s 2) -c(t) ]ds 1 ds 2 }

+ 1 f (S)c(t-s)( +ai+ [a )as}R 00

M20 - 2Z 0

where

(9.39) c(t) = R 90(R,t)• DR

a(t) = O(R,t)

The R, 0 and Z components of (7.12)1 may be written as
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<2><22<2> <2>/R2
(9.40) por -pO R  2/2 a <2>/R + L(V2r < 2 > -r /R

-' 2 2 2
+ L[R~a 4/DR + R(a/3R) + 3 34/3R] + M2 R

<2> 2 2> <2>

(9.41) 0  = L[V (RO < ) - <2/R]

and
<2>+<2>2<2

(9.42) pOz <2 - 3T<2>/az + L(V2z< 2 )

The displacement boundary conditions are

<2> 9<2> <2>
(9.43) r (R,Z,t) = (R,Z,t) = z (R,Z,t) = 0 at R = a & b.

To form the stress boundary conditions (7.12)4, we note that

<1>T
N = + eZ (at Z = +1), T< I >- N = 0, F< I  N = 0. Hence

(9.44) T<I>. n< I> 0.

To compute T< 2> we note that E<2>= 1 VU<2> + (Vu<2>) T and

using (9.34) find

..r<2> 2 RR2> r <2> z<2>
(9.45) - -

2 R4 4 R R r R

<2> <2> <2> 2 <2>
[2E< I ROR 2r< /R-0 Re

<2> <2> <2> <2>
rZ  +zR R Z  z

so that

e <2> <2> <2> <2>2E ez r + zR )eR + ROe + 2z e
-ZzR Z -0O z -z

<2>
The remaining terms of T • ez are formed form simple manipulations

using (9.16).
<2> <2> 2 >

(9.46) T- Z  eZ + L(2E2 ez
2> f<2 -62eR L(rz Z

<>+ + R z

<2> ^ <2> I

+ Z  [-i > + (2z Z  2
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combining (9.44) and (9.46), we get

(9.7 t <2> = <2>+ <2> +A<2>--n z L(z+ R

<2> <2>
+ e [-T + L( 2 zz )] = 0 at Z = +I.

<2>
We note that the equation (9.41) governing e is homogeneous

(M2 0 = 0) with homogeneous boundary conditions [equations

<2> <2> <2>
(9.43) and (9.47)]. Hence 0 - 0. To find r and z<

we must solve (9.36), (9.40), (9.42) subject to the boundary

conditions (9.43) and (9.47).
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10. Linearized theory of perturbation of the rest state

In this section we derive the first order equations of

motion for incompressible solids for motions perturbing the

rest state. Since the rest state contains all static deformations

and, in fact, coincides with the set of all elasLic deformations,

the linearized equations derived here form the basis for the

discussion of stability and bifurcation of elastostatic deforma-

tions of solids. The trouble we find when carrying out a correct

analysis of the linearized theory is that so many (2) material

constants and (7) functions are needed to characterize the

material.

For incompressible materials det F = 1. In the rest state

(10.1) det F = 1,

where

E(t) = Vx(X,t), F<0 > = Vu (X) + J

(10.2) x = X + I MX + _ _ (X,t) + O(e2 ).

In §5, we derived the perturbation formulas for the kinematic

variables for perturbations of the natural state. But these

are valid only when F<O> =1. In the case of perturbations

of the rest state, the derivation of the perturbation formulas

for the kinematic variables is similar to the one in §5. Here

we list only the results.

_ =F<0> <1>2
(10.3) E(X,T,C) = 0X) + CF Xt) + O(C2).

(10.4) F-11,C ) =(E<0>71 -_(E<o>T 1 (F< 1 >(T)) <0 - 1 + o1£21.

(10.5) 2(s,e) ( < )>s) + O(C3
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where

<I> F<1> 0> > <>T - T1

(10.6) G (s) = F (z) T ) + (F = ()

F < l > ( t (E< 0 > 1 <0 >T <0 F<I>Tt )

(10.7) B(tE) F F< > T + E 1F + F F ) + 0(c=(<<0> T < > F 2T

(10.8) det F(T,E) 1 +E{tr[(F<>T
1 F<>(T)1}+ O(E 2

where we have used the equation (10.1). We do not need the

perturbation formula for p. To find the perturbation formula

for n, we use

(10.9) da 2  = (det F) 2(N • C -  • N)dA 2 .

where C = FTF is the right Cauchy-Green strain tensor. This

formula reduces to

(10.10) da 2 = (N • C - 1 N)dA2

because of (10.1). Expanding both sides of (10.10) into powers

of c and identifying independent powers of E, we get

(10.11) da < 0 > =[ N *(C<0>T1 • NI /2dAI

T T
<1> <0>-i <1> <0>-i <0>-i <1> <0 >T-(10.12) da =-N[(F )F < (c< >  +(C= N F (F0)

• N dA/2,N •(C< 0>T1  'N ]1/2.

Next we use

(10.13) n da = (det F) (F-I ) T N dA )

and (10.1) to derive

(10.14) <0 > (< 0 >T -1 _ (q<0>1 Ni/2
_ ) NI 2
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(10.15) n<1 > N (F<0 >Ti F<lz> <0>-i +(c<0>-l F<> T(F<0 > )- ] N

(!<0>-T)I _• .>2[N-i(°>T 1 - N_

(<0>T -i <> <0> -i < 0>i 1/2

- (F N/[N( )T• NI

Finally

(10.16) n = <0> + t n < I> + O(C2

where

O> <0> <0>
(10.17) tn<0 > T< 0 > n

and

<1> <1> <0> <0> <1>
(10.18) t I =T n + T n

<0>
We note that when F =1, all of these formulas reduce to

those in §5.

To find the canonical forms for the perturbation stresses,

we need to expand equations (3.3) and (3.4) into powers of c.

So we need perturbation formulas for fi' i = 0, 1, 2 and Oij'

i = 0, 1, 2, 3, j = 0, 1, 2.

(10.19) fi = f < 0 >+ efi <1> + O(C 2

where

-<0> O<> <>
(10.20) fi = fi(tr B< 0  tr 0

and

(10.21) f< I> (afi/aIB1  )tr B<I>+ 2(3fi/311<0> <1>i i =0 i B =

(10.22) Oij = ij< 0> +  O ij<i>+ O(E )

where
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<0> <> <>2
(10.23) = (tr B , tr B , s)

and

<<0 <1>

(10.24) 0i < >  (aij/aIBI )trB<l>+ 2(aij/3II1
ii B =0 B F=0

tr(B<0> B <).

As stated earlier, we may group all terms of T proportional

to 1 with -p. Another simplification comes from combining

equations (10.1) and (10.8). Then

(10.25) tr[(F<)> Fl  (T)] = 0.

Hence

(10.26) tr[G< > (s)]= .0.

But tr B< 0.

The perturbed stresses are given by

<0> <0> <0> <0> <0> <0> 2
(10.27) T -P I + fl<0B + f2 B

1 2

and

(10.28) T< >= -P <>l + (f<I> B< 0 > + f <0>B<I>

1 1

+ (f 2 <1> B<0>2 + f2<0>B <1> B<0> f2<0> B<0>B <1>

B f2  B f2 B2
CO 12><0>>B<0> 2 G< I >C

+ f{tr[ll <0 >B< 0 >+ 12 )G >(s)] <
0

" tr4) O<> B< 0 >+ O> B >)G <(S)]RBO

<0>+ <0> <0> <>> <0>2 <1>+ 302 = + =31 B (s)2

0<1> <0> <0> <0> B<0> G<IG l (s) (30 i +31 = + 032 B< 0 > )}d*

*We note that when F<0 > = B < 0>= 1, equation (10.25) reduces to
<!> <1>(7.1). Hence trB<= 0. It implies f. = 0 for i 1,2.

-567- (con't)
-567-



Equation (10.28) shows that for the linearized theory

of perturbation of the rest state of incompressible viscoelastic

solids, we need 2 elastic constants: f1  & f2 and 7 viscoelastic
material functions: ii(s), i = 1,2,3, j = 1,2 and 30(s)*.

To find the perturbed form of Piola-Kirchoff stress, we

expand S T = T(F T ) - in powers of E.

T <0 >T <1 >T 2
(10.29) S = S + ES <  + O(E 2 )

where

(10.30) S<0>T = T<0>IF<0 > -1

and
<>T T1 - <0 >T T

(10.31) S< 1 > T =T <1>(F <0>) -T <0> (F<0> ) F >(F <0>T) - 1

Substitution of (10.27) and (10.28) into (10.31) yields:

footnote con't

It reduces T< >to

<> <> I + (fI< 0>+ 2f2 <0B <=
O+<0> <0~l

+ f 2(c(> +<O <0iG< 1 >(sd
0 2(30< 31 32 = (s)ds

Here we have used equation (10.26). This form of T< >is same

as that given by equation (7.6) where

0 = f >(3,3) + 2f2  (3,3)

and <><0> <0>
s(S) = 2[30 <0>(3,3,s) + 31 (3,3,s)+ *32 (3,3,s)].

O0> <0> 0>
Here we have used the fact that when B4 1, trB trB <  3.

Exactly the same number of material parameters arise in Pipkin'S
(1964) viscoelastic perturbation of elastostatic deformations.
Elastic constants appear when the stress is evaluated on
deformations which are independent of time.
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T >T) <I>T 0>T) <I> <0>TTT T
(10.32) S [p< (F -F (F -p (F

+ fl<>F <0>+ f <0>F<I> + f<> B <0>F < 0 >

1 -1 =2 - -

+ f <0> (B
< > F < 0 > + B <0>F

< >

2

+ f -trLP11 <0> <0>+ < 0 >B< 0>)G<1 > <>
0 I t[l 12 = (s) ]F0

2
<0>B< 0> <0> <0> <1> <0> <0>

21< 0 ¢22 = ) (s)]

<0> <0> B<0> +  <0> B<0>2 0<1> <>T-

S30 )G (s) (

<1> <0> <0 > T<0>F<0

+ = (s)( 3 0 (F - + ¢3 1  = 0 32 B }as

where we have used the identities

(10.33) B<0> F<0>T -1 <0>

and
<1> >T -1 <1> <0> <1>T <0 >T -1
B (F ) F + F< F

Now we can write down the linearized problem of perturbation

of the rest state of incompressible viscoelastic solid:

..<i> <1> T

(10.34) po u div S<1
in V for t > 0

tr[(F <0) - F <  > =0

U_<> is specified on 10 for t > 0

<I> is specified on 3V for t > 0,In 20

<1>
_ is specified in V0 for t *(-o,0]

<<>1 < >  < I > <1>where S1  is given by (10.32), F = Vu (X,t),and -

is given by (10.18).
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11. The lingarized theory and elastic stability

The linearized theory of perturbations of the rest state

is a good place to start the study of stability and bifurcation

of elastostatic solutions of viscoelastic problems. We have

maintained that the use of elastic equations for unsteady

motions of simple solids has no good justification and is

probably unjustified, except as an approximation which is valid

in certain asymptotic limits. It is often true that these

asymptotic limits contain all the points at issue in certain

studies. But as a matter of principle in the study of stability

it is necessary at least to test the stability of a solution

to small disturbances of arbitrary frequency. Such time

dependent disturbances lead to the linearized equations derived

in §10 and not to equations of "dynamic elasticity".

Some interesting points about the stability of elastic

solutions of viscoelastic problems emerge from general considerations

arising in the theory of stability and bifurcation. To develop

these points it is necessary to assume that the stability

criteria which are associated with the linearized equations are

valid for small disturbances governed by the exact nonlinear

equations. So if all solutions of the linearized equations are

asymptotically stable then the rest state is stable to small

disturbances (conditionally stable) but if one of these

disturbances grows without bound the rest state is actually

unstable. In the exact theory of stability one goes a step

further. In this step, the linearized equations are replaced

with spectral equations which arise formally from substituting

solutions of the form

-570-



(11.1) u<1> (X,t) = e tV(X), p<1> (X,t) = eat p<1 >X)

into the linearized equations of motions. The values of

a = E + iw for which the resulting problem has solutions

are said to be in the spectrum of that problem. We say that

the rest state is stable by criteria of the linearized theory

if there are no values a for which C > 0 and is unstable if

there are some such values. In the exact theory one proves that

stability and instability by spectral criteria imply actual

stability and instability for the correct nonlinear problem

when disturbances are small.

In the problems which come up in mechanics the spectral

values o(k) depend on a parameter k. The value a1 with the

largest real part is called the principal spectral value. The

loss of stabili-y is associated with a critical value k = ko

at which F I(k) = re a1 (k) passes through zero from negative

to positive. In most of the problems studied in mechanics the

spectrum which crosses over in this way is of eigenvalues.

In bifurcation theory we usually assume that the principal

spectral value a1 is isolated and has only one eigenfunction

v(x). In this case, if d 1 (k0 )/dk 3 0, we get steady bifurcating

solutions if o1 (ko ) = 0 and time-periodic ones if 1 (ko) = iw

Now we are going to assume all is good with the linearized

theory of the stability of the rest state (elastostatics),

and that the properties relating the spectral problem to

true bifurcation are as in the general theory of bifurcation

at a simple eigenvalue.

-571-



We may derive the spectral problem by substituting (11.1)

into (10.34). It is easy to verify that

S <>(u'~} SI (e atv) =eat (v)

wherect(v) is defined by (11.4), and

(11.2) t <1> (U <1>) t <1> (e atv) e a~t.8(v)
-n -n

where.8(v) is defined by the operator which arises from (10.18)

<1> at
when u = e v . The spectral problem governing the stability

of all elastostatic solutions is then

(11.3) P a 2v = divx(v)

tr(<>-1 A) in O
_r(F (Vv)] =0

v is specif ied on 31V

.b(v) is specified on 20o

where

(1.4 v) p<0 <> ) (v T (:,T) P<>FOT 1

_ p<> <0>+ -1 <0> - <1> <0> -

F f 1  VV

<0> "<1> <0> <0>+f (B F + B VV)2

OD tr( <0> s)< 0> <0> ()<0> 2 ^ <1> <0>
+ tr[(O1  (s)B + p 2 (S ) )G <>Eo

<0> (SA<0>+ <0> 0>2G <)% <0>.0
+ tr [0>1 ) (s < F > <>

+_ 0 >(~ 3< >()<O+ 3 0 (s)B<O2

^<I> cO>T) -l

+ <> <0> <0> T- 1 <0> <0>
G 00 (s)(F T + 031 (s)F<

+ 2<0> (SR<0> F 0> )e-as Us
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fi = i/IB )tr B<I>+ 2(fi/IIB L

tr(B< B ),

= (Vv)F<0> + F<0> (Vv)

and

G<l>= (Vv)(F< >)- + (F< 0>T) (Vv)T
<0>

All the quantities except the ij (s) under the integral

sign in (11.4) are independent of s; for example,

trp <O> (s) ]F 0> ds
0

<0> 0 ^l 0

U 1ii (s)ds} tr[B< G IF

So the spectral problem contains the history in the convenient

form of integrals over material functions, independent of the

motion.

In the simplest of the rest states,the natural state studied

in §8, it was possible to obtain explicit formulas, like (8.19)

for a and to use such results to infer properties of the

material parameters. The problem (11.3) is much more difficult

than the one in §8 because there are so many material parameters

and because the equations (11.3) govern the stability of the

whole class of elastostatic deformations of viscoelastic solids.

Nonetheless, there may be a principle, equivalent to the requirement

that the natural state of a solid should be stable against all

disturbances, which can be used to characterize the material

parameters appearing in the problem (11.3). Many states of

elastostatic deformation of solids are unstable so that the

simple criterion of stability has no force here.
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The principle which we wish to consider is that instability

of elastic deformations of viscoelastic solids cannot lead to

bifurcation into self-sustained oscillations. It is difficult

for us to imagine how a time-dependent motion of a viscoelastic

solid could arise from a static deformation of that solid.

To illuminate some considerations behind our conjecture

it is useful to compare the stability problems which arise

in the stability of fluids with those which arise in the

stability of solids. In the celebrated Taylor problem in

hydrodynamics the flow between concentric cylinders is driven,

say, by the steady rotation of the inner cylinder. At first

there is a featureless flow (Couette flow) which is uniform

like the data; at higher speeds Couette flow gives up its

stability to a secondary flow which is arrayed in a set of Taylor

vortices of approximately square cross-section. At still higher

speeds these steady vortices bifurcate into a time-periodic

motion in which a wave undulates around the vortices. The

corresponding eiastic solution is the torsional deformation

of an incompressible elastic cylinder. The solution of this

problem was found by Rivlin (1949). Green and Spencer (1959)

have studied the problem using a static theory of elastic

stability. Penn and Kearsley (1976) have demonstrated in

experiments that Rivlin's solution is unstable when the deformation

is sufficiently large. The symmetry-breaking bifurcation

observed by Penn and Kearsley is in the form of spiral bands.

We shall formulate the problem of stability of Rivlin's solution

in the context of our viscoelastic theory in the Appendix.
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The main point of comparison is that in the fluids problem

the boundary data, though steady, does work and gives a

continuous supply of energy which can be converted into permar.ent

time-dependent motion. In the solids problem, the imposed steady

twist does no work and does not supply energy which can be used

to drive a motion.

If we now suppose that the spectral problem (11.3) has the

same relevance to bifurcation as in the general theory of

bifurcation, we may expect to find steady symmetry-breaking

bifurcation, like the experiments, when the spectrum is of

eigenvalues j and the eigenvalue u with the largest real part

is real-valued at criticality. The other possibility is that

a = iw is not zero when . is. Then +iw are both eigenvalues at
+iwt

criticality and e- is oscillatory. In the usual case this

situation implies bifurcation into a time-periodic motion. If

our intuition is correct we should not have time-periodic

bifurcation in the elastic problem with steady forcing. So

if our choice of material parameters and functions leads to

complex-valued a at criticality we have made a bad choice.
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Appendix: The spectral problem for the stability of Rivlin's

solution for torsional deformation of a viscoelastic

cylinder

It is of interest to consider the stability theory discussed

in §11 in the simplest possible nontrivial case. Perhaps this

simplest nontrivial case is one of those (torsional deformation)

found by Rivlin (1949).

Torsional deformation of a right circular cylinder (of

radius a and height 2) of incompressible, initially isotropic,

viscoelastic material is given by:
0

r =R,

0
o° = 0 + kZ,

0z =Z

where X, = {R,®, Z} are coordinates of a material particle X

in the natural state and x. = {r° , 0° , zO I are coordinates1

0of x , the position of X in the deformed state. It is necessary

that some forces and torques be applied to the top and bottom

surfaces to maintain this deformation and the constant height.

The boundary conditions satisfied by this deformation are:

e = 0 + k at Z = + 1 and the surface r = a is stress-free.

To form the spectral problem (11.3) for the stability of

Rivlin's solution we need to find the components of F<O>,

(<0>) , B<0> and Cc >. e = {eR, e' aZ } is the orthogonal

basis corresponding to the coordinate-system in the natural

state. We introduce the orthonormal base vectors eI = eI /JeI "

Iel {i, R, 1). Similarly e. = (e r0 , 6eo' ez0 } is the orthogonal
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IT 1tz  Tt

C1*)i I) O -; ' i r -(

Fig. A.! Perturbation of the rest (torsional) state of an

incompressible, initially isotorpic,cylinder.

(a) The natural state

%0 = {R,0,Z: 0 < R<a, 0 < 0 < 2w, -1 < Z < 1}

(b) The rest state

VQO = {r0  1 z0 : 0 < r0 < a, 0 < < 2w, -l<z 0 <l}

(c) The perturbed state

V={r, , z: 0 < r <h(a,0, Z,t,c), 0 < e < 2w, -l<z<l}

where A(a,O,Z,t,c) is the free surface.

basis in the rest state. The corresponding orthonormal basis

is = e./iI where 1eil = {l, r0 , 1}. Then F < 0 >
, B >and

<0>
C have the following representation:
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<0> <0> 
ax F< 0 > 0x i

i J l e* i X ]-- (no sum over i & J);

<0> <0> <0>  = <0> <0>
B =B ij ei e;B ij FiK jK

<0> _<0> ^ -_ C _<0> _<0> F<0>
I J tI * IJ ki kJ"

The matrices of components F<0 >  B< 0 >  C < 0 >  are:iJ ijIJae

f0 0 0

[F<>i = [ 6 ij] + 0 0 r0 k

00 0

[B< 0>ij] = [6i] + 0r2 2 r k
r~k0 0  0 1

[C <0> = [ 6 Ij] + 0 rk

Tmt( r k 
r °a k2 ]

The components of (F< -  are easy to compute.

(C<>)-I= (F <0> )-Ij t a e.

where the matrix [(F< 0>)-IIj] is the inverse of the matrix

[F <
0 >iJ .

In this section, we use upper and lower case suffixes. This
is to emphasize the fact that such components are either
with respect to the basis in the natural state (upper case
suffix) or with respect to the mixed basis (One upper and
one lower case suffix). The usual summation convention
applies to these suffices also unless the contrary is explicitely
stated.
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<>-[0 0 0

[(F O> ) 1I j 1= [6 i1 0 0 r k.

0 0 0

From this we can compute T<> t <0>and S<> T  <0> is
-n >T

computed by solving the equation of motion div S = 0.

<0>It is easy to check that n =e =_
r

Now we consider perturbation of the rest state given by:

o <i> E2 <1> (2
r = r + cr + O(E ) = R + er + OCE ),

e = 0 + C< <1> + O(E 2) = 0 + kZ + Ee< I> + J( 2

o <1> 2 <1> 2z = z 0 +EZ O( ) = Z + Ez + O(E ,

where (r,e, z) are coordinates of x, the position of X in the

perturbed state. We could treat (r,6,z) asfunctionsof either

0 n o <1> 2 or and z or R, 0 & Z. x = x + Eu + O(E ) = X + u

+ Eu + O(s 2 ). Then u< >has the representation:

<i> <i> 0 rO<l> ^ <1> A
U =r e +r e + z e

-2-

<1> oThe components of Du /ax in the basis e are

ar<1> /r 1 ar<1>/a0oa<i> 1r<>/ zO

0

[au_<l>/xa ]  a(r ° e<> )/r° rae <l>/a'0+r<l>/rO r°Dl/3z°

Bz<l> /r O  1 0z<l>/D0o z<1> /z

r

Now

F =au /ax = (au< ax )(ax /aX).
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The representation of F4I > is:

<1> <1> e <1> =3 u -ax k0 l-kl (no sumF~Q ; = a kx over j)

au<
>
<1> >

(a-X ) ik kJ

The matrix of F"l>ij is given by:

Ir<1>/r O  (i/r° ) r<1> /a0°-l> r1>/z O

(A.1) [F< 1>i] = 9(rol>)/3rO 3e<i>/@Oo+r<I>/rO  r0a1l>/azO

az<1>/arO  (I/rO ) az<1> /30 z<l> /z O

<1> 0

o 0 k(r<l>/a60 - r°8<l

+ 0 k(r°38<l> /a
° + r<

0 0 k(az<I>/36 J

Now we are in a position to find the components of B< >and

G< > (s):

<1> <1> ^B = i e

where

0 F 13

(A.2) B <1 > ]= 2[E< 1> ik] + r0 k F<1> 2F< 1 >  F<1>ikB ik 13 23 33

0 F< 33 0

and

2E<1> <1> F<1>
ik F iJ 6Jk + kJ 6 Ji

G<1> (s ) = G<1>  ^ ^

ik ti @ k
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where 0 0 IF<12T

< (>sik(s)] = [2 IE<l> ik l -rok 0 0 EF<1>22E

IF <1> 1; F<1>22 lE<>32

and

UaL - a(t-s) - a(t) for any scalar a.

<1> <1> <1> aT
Now we can find components of n , T , t div S

in the basis of the rest state and components of
<I >T <l>T -i e

S =S e. 0e= iJ -1 -J

in the mixed basis.

Finally we note that (F< >) -I F <>has the representation:
<0> -i <i> , 0> -I F<]>

F ) F =(F <  F
Ij jK - a!

So

Tr[(F<) F< ] = (F<) F

F F 1 1 + F< 1 22 + F< 1 33 r k F<1 32+F 22 +F 3 rkF 32"

Now to write the spectral problem (11.3) into the component

form, we let

<1> at ^<l>
r (X,t) = e r (X),

< l > (X , t) = eat <I> (X),

<1> at ^<l>
z (X,t) = e z (X).

Then

A<l> r O <l> <1>
(A.3) v =r e + 0 e + z e

I 2.

(V = ti 0 ej
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and
^<i> ^el

B< I >  B ik ei 0

where the components (Vv). a <1>
-i and B ik can be obtained from

<1>
the equations (A.1) and (A.2) just by replacing r , e>and
z<l>b ^ <> ^<i> ^<>
z byr ,E and z .

^<I> ^<I> e
G =G ikie k

where 0 0 (Vv) 1 2

[Glik] = [(Vv) ij 6Jk + (Vv) kJ 6 Jii - r k 0 0 (Vv) 2 2

(Vv) 1 2  (Vv)2 2  2(Vv) 3 2

Now we can find the components of divo(v) and.(v) in the

basis of the rest state. Finally

Tr((E< >)-l (Vv)] = ( V)ll + (VV)2 2 + (Vv) 3 3 - r k(Vv)3 2 .

Then the spectral problem (11.3) becomes:

02r <I>  dy 1
2 a r l [div _(v)] 2  n ^

0 2 ^<> i

0= [div(v)] 3

(Vv) 11 + (Vv) 2 2 + (Vv) 3 3 = r0 k(Vv) 3 2

^<I> <I> ^<I>
r = 0 = z = 0 on Z=+ 1

&(v) = 0 on R = a ,

where
<i> 0 r 8<1 >  <i>

vr e +-r e +- e

as given by (A.3).
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ABSTRACT. This paper documents the levelopment of a closed form
solution of the distribution of displacements and s;tresses under a rinid
wheel. The wheel is assumed to be infinitely long and partially em:-
bedded in a semi-infinite homogeneous, elastic-isotropic medium.

In the first step in the development of a suitaole solution, the
stress at the interface between the wheel and the underlying muterial is
decompoosed into normal and tangential stresses. The stress function was
us--d in representing the displacements and stresses within the soil
media in terms of analytical functions. The Schwarz-Christoffel equa-
tion was used to transform the geometry and the boundary condition of
the region beneath the wheel and to match it with the stress functions.
The Cauchy integral equation was applied on the transformed boundary
conditions to obtain the shear and normal stresses and displacements at
any point within the region of the soil-wheel system.

The analytical solution is believed to permit the evaluation of
displacements and stresses within the soil beneath a wheel resulting
from various combinations of radial and tangential stresses.

I. INTRODUCTION. The study of soil-wheel mechanics is of inter-
est to the engineer who has to make a decision on running gear require-
ments for the most efficient vehicle and to the military planner who
wants to be assured of vehicle mobility in a given terrain. To date,
most research has been concentrated on determining stress distribution
along the soil-wheel interface, and very little information is available
regarding stresses and deformations within the soil mass beneath the
wheel.

The problem of determining stress and deformation distribution
beneath a moving wheel is a complex one. A simplified test procedure
has been developed for determining vehicle performance by means of a
plate load test I or a special cone test. 2 Onafeko and Reece 3 developed
an experimental procedure for predicting the relationship between slip
and shear stresses beneath a rigid wheel. Wong and Reeceh conducted an
experimental study to predict rigid wheel performance based on soil-
wheel stresses. A finite element method was used by Perumpral and his
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coworkers 5 to determine stress and deformation distribution beneath a

rigid wheel. Their analysis was based on a variable modulus of elas-

ticity as determined from triaxial compression tests. A similar finite

element procedure was used by Yong and his coworkers6 to predict defor-

mation distribution beneath a tire wheel. A closed-form solution for
predicting stresses beneath a rigid wheel on an elastic soil medium was

developed by Gilbert and Al-Hussaini.
7

The closed-form solution for predicting stresses and deformations

within the medium supporting a wheel can expand our understanding of 7

soil-wheel mechanics. The work initiated by Gilbert and Al-Hussaini is

intended to include the deformation distribution within a soil support-

ing a circular rigid wheel.

II. METHOD OF ANALYSIS. The theoretical derivation is based on

simplified assumptions in which the soil medium is simulated by a semi-
infinite homogeneous elastic isotropic mass under plane strain condi-

tions. In addition, the gravity stresses within the soil mass are

neglected. To satisfy uniqueness of solution, the equilibrium, boundary,

and compatibility conditions must be satisfied.

a. Equilibrium conditions: The equilibrium conditions for a
weightless material are

_ + X = 0 (la)

ax ay

au 3__ + Y= 0 (lb)
ay ax

where ox , ay are the normal stresses acting on the x and y

plane, respectively, and Txy is the shear stress within the plane

bounded by the x and y axes.

b. Boundary conditions: The boundary conditions are

0 d - t dx (2a)
x ds xy ds

T -- 4L d = A! (2b)

xy ds y ds

where X and Y are the Cartesian components of forces per unit area

acting on a small element of the boundary ds
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:. 'Jm::t, lb t cr/ilti': ::: Thu o::!: ..-? J['' *: :'. i:, CR~

+ -
x

,)n

:1,' 12 . X v

J z

A:]d'In uj.u'it i on a nd c'luation 4b results in

(a + ay) P U(xY) + a U(x'y) = V2 U(xY) (5)
xy2 x 2

"iubstitution of equation 5 into equation 3 lead:; to

v (a + a ) = V [J(x,y)] (6x y

Complex Representation. The solution of the biharmonic equation
(Equation 6) can be simplified using complex variables following a pro-
cedure presented by Timoshenko and Goodier 8 to obtain the following

z(xy) = 1/2[i CZ) + ZO(z) + x(z) + -Xz)] (7)

where ¢(z) and x(z) are analytic functions and 77T and X(Z)
are their complex conjugate. These functions can be determined from the
boun.ary conditions. It has been shown by Timeshenko and Goodier 8 that
the normal and shear stresses can be expressed as

+ ij = V'(z) + ¢'(z) - z'(z) - x"(z) (Ha)

a- iT = 4'(z) + '(z) + z"(z) + x"(z) (Sb)y xy
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Addini- and substracting equations 8a and 8b, and substituting '(z)
and X"(z) with P(z) and Y(z) , respectively, the following
expressions can be obtained

* + a = 2[€(z) + p(z)] 4 4 Re['P(z)] (9a)

* - a + 2iT : 2[-Z'(z) + Y(z)] (9b)y x xy

Complex Representation of the Displacement. The stress-strain re-
lationships for the plane strain condition are

2G e = (1 - V) a - Va (10a)x x y

2G e = (i - V) a - vO (10b)y y x

where v is Poisson's ratio and G is the shear modulus. Substituting
equation 9 into equation 10 and after algebraic manipulation leads to

2G c = (I - 20v)O(z) + T(]- _ZV z) - Z_' (Z)

- Y(Z) - T(z) (lla)

2G C = (1 - 2v)(z) + Nz)] + '(z) + z7'(z)

+ Y(z) + -z) (llb)

Integrating equation lla with respect to x and equation llb with re-
spect to iy , and after adding the resulting equations we obtain

2G(v + iv ) = (3 - 4v) O(z) - zO(z) - (z)x y

+ H(x) + ig(y) (12)

where d(z) = T(z) and v and v are the horizontal and vertical
d(z) x y

deformations, respectively, and H(x) and g(y) are arbitrary func-

tion.;. By taking the derivative of equation 12 and comparing it with
equation 1i we obtain

H'(x) + P'(y) = 0 (13)
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Sfuliows that h'(x) ( -Iy) = C where C is a constant. There-
."e, the functions h(x) and ((y) represent rigrid body 1isniacament

ltane and they do not intlu nc- the stresse; or strain.
',en <) and v(y are discarded, equaltic 1? can be written

.Kv + iv ) (3 - 4v) (z) - z4(z) - O(z) (i)x y

i'.uzation 14 rer resents the relationship between the 1iplacement:
'.I nc-,mtlex functions (z) and P(z)

roesentation of Stresses and Deformation Components in Curvi-
-ai , -'oroordinates. Because the problem under consideration contains a

eboundary, the 1,roblem will be greatly simplified by mapping the
-t onto a hal' spauce. Assume that the function by which a prope:r

troinsformation can be achieved in represented by

z = f(t) = f(r + is) (15)

wnere r and s are curvilinear coordinates in the t-plane. It is
more appropriate to transform the functions ((z) and '(z) from tlhe
z-slane to a corresponding one in the t-plane. This can be accomplished
as follows.

D(z) = elf(t)] = C(t) (16a)

Y(z) = qlf(t)] = Y(t) (16b)

It has been shown by Timoshenko and Goodier 8 that stresses in the z-
and t-plane can be related by the following expressions

a - a + 2ir = (ox - a + 2i xy) e2 iM (17a)
s r rs x y x

and

0 + a =a + a (17b)r s x y

where

2i_ f' (t) (17,)e =- -( 7 )

f'(t)

Boundary Conditions in the z-Plane. Let N and T be the normal
and shear stresses, respectively, applied to the boundary B in the
z-plane; thus
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a+2iT
(N +iT)B o+iT) + !-B (18))B Y xY)B 2

which, when compared with equations 9, 16, and 17, yields the following

N + iT)B = [O(t) + 0(t) + f(t) fl(t) + '(t)]B (19)

Since the boundary in the z-plane corresponds to the real axis of the
t-plane, i.e., t = r and s = 0 , thus along the boundary of the
t-plane equation 19 may be reduced to

N + iT = (r) + 0(r) + frr) ) + _((r) (20)

whose conjugate is

N - iT D (r) + T--) + f(r) 4( r) + TT (21)

f'(r)

Equations 20 and 21 represent the boundary condition in the z-plane.

III. SOLUTION OF THE PROBLEM. The solution of the stresses and
deformations beneath a rigid wheel as shown in fig. 1 involves the de-
termination of a mapping function which maps the region containing the
supporting medium of the wheel, represented by the z-plane in fig. 2,
into a semi-infinite region representing the t-plane. This is accom-
plished by mapping the z-plane into an auxiliary plane called the
w-plane using the following relationship

z = a tanh w (22)

using the Schwarz-Christoffel transformation9 to map the w-plane onto
the t-plane. Detailed derivation of the transformation was previously
presented by Gilbert and Al-Hussaini 7 and the transformation function
can be written as

z = a tanh [2 - It + a)] (23)

where a is the abscissa in the z-plane at which the circular arc
beneath the wheel intersects the straight line boundaries, and K is a
constant such that the maximum penetration of the wheel 6 into the
supporting medium is a cot K
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Fig. 1. Schematic wheel and stress at a point within the supporting
medium
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Fig. 2. Transformation of the half-space with the circular wheel
removed onto the half-space
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IV. APPLICATION OF THE CAUCHY INTEGRAL FORMULA. 9  The Cauchy inte-
gral formula states that if f(h) is an analytic function within and on
a closed contour C of simply connected region R , and if point C is
interior to C , then

11 f(h) dh (24)
27Ti c h -

Equation 24 implies that the value of a function that is analytic within

a region is completely determined throughout the region if" the value of

the function is known on the boundary.

The Cauchy integral formula was applied to equations 20 and 21 by

Gilbert and Al-Hussaini7 for determining t(t) , V'(t) , and T(t) and

the summary of the results are presented herein

N-iT 'l t-

27Ti kt + a) (25a

whre N -iT 2 a (25b)

where G(t) = e 2w1

2 2w

G'(t) = (t2a2 e2w 1

K
Wl K K Re (w) + iln (w)

By knowing the functions necessary to define (P(t) , 4'(t) , and T(t)
the solution of the problem is considered complete; the final equations
for determining stresses and deformations are
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ax = 2 Re 0(t) - Re [T0 VW + Y(t)] (26a)

r- l(t) ,

a = 2-Re 4-(t) + Re ft+ t (t (26b)Gy : 2Re¢() R f'(t) I

T IMf '(t + '(t] (26c)xy If f'(t)

v = -2v Re O(t)- -Re f(t) Ot + t(26d)
x 2G I-

v - 4 Im O(t) - -LIm f(t) p(t) +  _ (26e)
y 2G 2-G I

V. NUMERICAL EXAMPLE. A numerical example is presented to illus-

trate how the stress distribution and displacements underneath a wheel
change with wheel penetrations. The numerical evaluation of the stresses
and displacement is accomplished by a digital computer since manual eval-
uation would be virtually impossible.

In this example a 30-in.-diam wheel is considered to apply radial
and tangential stresses of 20 and 10 psi, respectively, to the subgrade.
The wheel is considered to penetrate the medium to depths of 0.5, 1.5,
and 3 in. The results are presented graphically in figs. 3 and 4.
Figure 3 shows how stress concentrations at a depth of 6.5 in. below
the surface of the medium increase with wheel penetration. This depth
was arbitrarily chosen for the purpose of illustration, but with this
solution, stresses can be evaluated anywhere in the medium for amy
penetration or load. Figure 4 presents the horizontal and vertical
displacements versus range.

VI. SUMMARY AND CONCLUSIONS. A closed-form solution for evaluating
stresses and displacements within a semi-infinite mass whose upper bound-
ary contains a circular indentation was derived. The solution is general
enough to consider every condition from a case where no indentation oc-

curs (i.e. straight boundary) to a case where a complete circular hole
is formed directly under the surface. The loads applied at the surface
are assumed to be uniform. This is a somewhat simplified case, but the
solution is very flexible and is easily modified to incorporate any sur-
face loading which can be described by an integrable function.

The general solution developed is believed to provide a tool for
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solving a variety of plane strain 1 robleis with different boundary and
loading conditions. Soil-wheel interaction problems can be considered
one such example.
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ON THE LIMITATIONS AND IMPROVEMENT
OF PRESENT NUMERICAL WEATHER PREDICTION*

H. Baussus von Luetzow
U.S. Army Engineer Topographic Laboratories

Fort Belvoir, VA 22060

ABSTRACT. The paper discusses medium and long-range limitations of the present
numerical weather prediction model. It shows that hydrostatic long-range fore-

casts may be obtained by a system of two prognostic and two diagnostic differ-
ential equations with implicit parameterization of external energy sources. It
further presents a system of equations incorporating mesoscale convection and
capable of generating improved medium-range forecasts.

I. INTRODUCTION. There have been considerable theoretical and practical

advances in numerical weather prediction since the publication of Charney's
[1951] article "Dynamic Forecasting by Numerical Prediction." Although an

overview of pertinent research and experimentation is beyond the scope of this
paper, the interested reader may profitably consult Phillips' [1960] article,
"Numerical Weather Prediction," Thompson's [1961] book "Numerical Weather
Analysis and Prediction," Smagorinsky's [1963] article "General Circulation
Experiments with the Primitive Equations," the book "Lectures on Numerical
Short-Range Weather Prediction" published by Hydrometeoizdat [1969] for the
World Meteorological Organization, the WMO [1965] publication on "Research

and Development Aspects of Long-Range Forecasting," the book "General Circu-
lation Models of the Atmosphere" published by Academic Press [1977], and Shuman's
[19781 article "Numerical Weather Prediction." It should be further mentioned
that 500mb numerical routine forecasts in the United States based on the baro-
tropic vorticity equation were started by the Joint Numerical Weather Prediction
Unit (now National Meterological Center) in 1957. These forecasts were improved
by a three-level model developed by Cressman [1963]. A further improvement

resulted from the introduction of a multi-level primitive equation model
described by Shuman [1965]. Progress in forecast skill has essentially been
achieved by an increasingly better three-dimensional data base as initial
data, utilization of more sophisticated models under inclusion of humidity
and related effects, and higher grid resolution with an associated greater
computer capacity.

This paper describes in section II the primitive equation system in the

xy, pt-system as the basis for the derivation of filter equations. Sec-
tion III is concerned with some relevant aspects of filtering, presents

* The research presented in this paper, originally sponsored by the author's

organization, was not performed as part of presently assigned duties.
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the vorticity equation and corresponding divergence equation, and establishes
a diagnostic and prognostic filter equation. It further includes a comparison
ofaprediction system consisting of two prognostic and two diagnostic equations,
supplemented by the differential equation for ground pressure, with the
primitive equation system. Finally, it addresses some ramifications of the
new signal generation process with respect to hydrostatic numerical weather
prediction. Section IV contains a short overview about initialization under
consideration of an optimal omega equation and the diagnostic filter equation
derived in section III. In section V, the necessity of a non-hydrostatic
forecast system for more accurate and long-range weather prediction is
pointed out. It is supplemented by a mathematical appendix following
section VI, conclusica. The emphasis in this paper has been on the clarifi-
cation of the filter process, on the consideration of pertinent experience
gained by others, the necessity of utilizing better diagnostic equations for
initialization, the value of the primary diagnostic equation with respect to
the upper boundary, and the identification of mathematical problems and their
solutions.

II. THE PRIMITIVE EQUATION SYSTEM. The primitive equations in the
(x, y, p, t)-system with x as the coordinate toward the east, y as the
coordinate toward the north, p as the vertical pressure coordinate, and t as
elapsed time are

aU+UU + U+ au= + fv (I)

at ax ay a p ax

v+ _ + v-+ u =_ - - fu (2)
at ax  ay ap ay

a u a
= 0+ + 0 (3)

ax  3 y p

_ _ R a 1 (43@ + LO + -+ ow =(4)

a a a 5 a a c p dt
t p x p y p p

ar ar ar ,ar dlnr
+ + v- + ,;--= 6r ---- s ()

at a V ay ap dt

a a * a*L + U + *- + p*V*.VO* = 0 (6)
at ax ay
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The above differential equations are in sequence the horizontal equations
of motion, the continuity equation, the thermodynamic equation, the con-
tinuity equation of the mixing ratio, and the equation for surface pressure.
As to symbols, u =xk, v = , , = " are the horizontal and generalized
vertical velocity components, respectively, 4 is the geopotential, f is
the Coriolis parameter, 6 is a measure of static stability, R is the gas
constant for unsaturated air, cp is the coefficient of specific heat at

constant pressure, r is the mixing ratio of the mass of water vapor to
the mass of dry air, dq is the diabatic rate of heat added to a unit

dt
mass of air, 6 a dimensionless parameter between zero and one, r is the
saturation mixing ratio, and p*, 4*, P* are pressure, geopotential, and
air density at the earth's surface, respectively. Explicitly, it is
f = 2Q sin with Q as the angular speed of the earth's rotation and 4
as geographic latitude.

Of further interest is the hydrostatic equation

1 RT (7)

ap P p

where o and T den3te air density and absolute temperature, respectively.

The static stability is explicitly

32 + a

a p p (8)

where K = - is the ratio of coefficients of specific heat at constant
c

pressure an constant volume, respectively. In the case of condensation
of water vapor it has to be replaced by the effective static stability

H2 = - F V(rsT) (9)ap p(9

p

where r is a function of rs and T.

In hydrostatic generation processes a and H2 are required to be positive.

1) It is wm-pgw for the computation of the vertical velocity w. In this
respect, g is the upward component of the apparent gravitational acceleration.
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For the purpose of simplicity, frictional terms in equations (1) and (2),
applicable to a boundary layer, and subgrid-scale diffusion terms have
been omitted. For the same reason, the decomposition of 4q in eq. (4)

dt
into several terms and their computation is not discussed nere. In
global applications, equations (1) - (6) require a formulation in spherical

coordinates.

The numerical integration of the primitive equations by finite difference
methods is straightforward. At the upper and lower boundaries, the
kinematic conditions are w = 0 for p = 0 and w* for p = p*, respectively.
Rigid and otherwise "closed" lateral boundaries require utilization o: a
reflection technique described by Hinkelmann [1965. This technique
may also be applied in connection with the determination of vertical
derivatives of the various field variables at the lowest and highest
generation level. Although the hydrostatic equation filters out sound
waves, the primitive equations generate gravity-inertia waves. Accord-
ingly, time increments At - 10 min. must be used in numerical integration.
At a specific grid point, the time integration is generally performed in
the form

a F
F(t) = F(t-2At) + 2At(-) (10)

at-At

It is of significance to emphasize that the hydrostatic system (1) - (6)
is not a strictly deterministic one. It is essentially restricted to a
grid resolution with Ax = Ay >50km and to a limited number of vertical
levels. The system is further subject to hydrodynamic and correlated
hydrostatic stability. According to Holloway and Manabe [1971] one of
the most serious difficulties in designing a numerical model of the
general circulation is in the parameterization of moist convection. As
a consequence of the occurrence of dry and moist convection under pro-
nounced baroclinic conditions, equations (1) - (6) have to be supplemented
by convection adjustmgnt schemes. The generalized vertical velocity w
and the divergence - 'w have, therefore, a representative character. In

a
order to eliminate computational noise, in part due to aliasing effects
caused by discrete numerical integration of quadratic terms, the U.S.
National Weather Service [19781 uses a 25-point smoother. The reduction
of aliasing effects by spectral methods has been discussed by Bourke et al
[i977]. It should finally be mentioned that eq. (6) of the hydrostatic

system can be eliminated by the introduction of the normalized pressure
coordinate s =P_ , first proposed by Phillips [1956]. This leads to

p*

a modification of the presented system, in particular of equations (I)-
(3), and the resulting continuity equation becomes a prognostic one.
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III. FILTERED HYDROSTATIC PREDICTION SYSTEM. Equations (1) and (2) can be

transformed by applying the two-dimensional curl and divergence operators
on the corresponding vector equation of horizontal motion:

d (f + = (f + 0 Ap aw, au x ap (11)
cit- ap ) p

d divV+ -(div V)2 +(def V)2 _ r2' + V W + u f 62 (12)
dt 2 yw f

In these equations, r av - u the vorticity, au av
In thesehquationsityi, -i-- +- is the

ax  ay ax  BY i h

divergence, V is the horizontal velocity vector, and

(def V)2 = (( - Y2 + L + LX)2 (13)
ax a y a y a

The hydrostatic approximation implies a finite scale and quasi-horizontal motions with
filtered or smoothed wind components U^ and ^ which permit the decomposition

ao =aL , ax =' ax
ay , V= x U2 ay. V, a) (14)

Further,
$' I -- = - (15)aA2 0,, ,LO + L9 L2 X aI W)

ax ay ax Bx ap

The vorticity equation is then wiritten

^) aA2+, 0) +, V aA2 0+ a)A2__ + " (f + 62@ '-+

at at a- +p p

+ a(16)
ay ap ax gp
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The divergence theorem is

a aA+2--- x + &2 (X)2 2
at u ax Wy''a 2LA + (def V) (&2 ,)I+t x ay ap 2

+a a aa _ _ +L = f 2 (17)

ax ap ay ap

The continuity equation assumes the form

W - . 2X (18)
ap

The pressure tendency equation can be stated as

at Vp +A rO 0 (19)

The signal character of the prognostic equations (16)and (17) is evident from the

terms _ 1 2* and -L 2X since solutions of two Poisson equations are required
tt at

to determine the time increments 6V and 6X. In fact, vertical-transverse
gravity-inertia waves are expected to be filtered out, and their inclusion
or occurrence would be incompatible with equations (16)-(19). Consequently,
the geopotential * in eq. (17) must also be a filtered or smoothed variable,
and the development of hydrodynamic instability must be eliminated. There-
fore, an external, non-selective smoother and a convective adjustment must
be applied with respect to the thermodynamic equation (4), or an internal,
selective, and consistent filter must be established which applies simul-
taneously to u, L, and i - , i.e., to three filtered variables.

In order to derive appropriate filter equation, the operator d__ is applied
dt

to the horizontal equations of motion, with the result

d2 f2+fi, V#- V (20)
dt2 (0

where k is the unit vector directed upward. Application of the horizontal curl operator
x ( ) pertaining to eq. (20) yields

d:" , d2Vx = 2 -Pf+fi xVO v*Vx dt2  Vxdt2  dt (21)
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where V, is the non-divergent velocity vector. The operator V7 x d ()eliminates
a2 d
-7 x associated with the second term on the left of eq. (21). Its non-deterministic

d. 2 V
or filter version, which also requires Vx dt 2 = 0, is explicitly

L ' ()'+a a 2 f +L 2 +

a). a x 2 ay ax axay + a a-'2 ay axap ax ,yap

+f 2 ,&20=0 (22)

Somewhat stronger filtering of gravity-inertia waves results if the divergence operator

IV ( ) is applied to eq. (20) and V - d2V 2 is neglected. Accordingly, the resulting
filter equation dt2

d &20=(f2+&20) ' ( + 2 + = a2 +
dit " ax axap kyb -ap

LV 820 '0_ u_ 2 +: LO-26) (23)

y ax, a X ay axa, ax k.2 ax
has a prognostic character. Elimination of the material derivative ± A20 from eq. (23)

by means of the thermodynamic equation makes it possible to estabiish the required W-
equation for initialization. Hyperbolicity is a consequence of the non-identity of the
hydrostatic signal generation process with the more complex non-hydrostatic process
and the substitution of an unfiltered #-field for a smoothed 0-field.

It is of further significance that eq. (22) has the "horizontal" ellipticity criterion

(f gf ( v ) . M u )' > 0 (24)

a20due to the absence of a term involving a--

The diagnostic equation (22) represents the adjustment process on the signal
scale. It replaces the thermodynamic equation, acts as an imediate selective
filter with respect to eq. (17), prevents the development of hydrodynamic
instability, and permits an integration time increment of about one hour.
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Derived and suitable for numerical weather prediction, equations (22) and
(24) and another stability criterion presented in section IV are related
to van Mieghem's [1951] work on hydrodynamic instability.2)

Filter equations derived by other authors did not result in the establish-
ment of a signal generation process essentially equivalent to the primitive
equation system. Thompson [1961] prepared a system consisting of the
vorticity equation, the socalled balance equation exhibited in section IV,
and a correlated omega equation, i.e., one prognostic and two diagnostic
equations. Fjortoft [1962] established a system of two prognostic filter
equations and the thermodynamic equation, to be solved for u, v, and W at
each time step by the method of under-relaxation. As a filter condition,
he chose d 2V =

sd--= 0. This new operator was also employed by Hollmann [1966]

in his investigations of new diagnostic relations between wind and pressure
in a barotropic atmosphere with divergent flow. Fjortoft's system was
tested by Fruehwald [1968] who emphasized its superiority over the classical
balance equation, particularly under anticyclonic conditions. Hinkelmann
[1969] recommended the application of diagnostic equations resulting from
Fjortoft's new filter condition for initialization of the primitive
equations. Herbert [1971] studied static and quasi-static motions in a
compressible though isothermal atmosphere, where p •p -'= const., under

filter assumptions (-) div V = 0 and non-consideration of y-dependence.
dt

Although his results are not directly applicable to realistic initialization,
they show the shortcoming of the hydrostatic filter system pertaining to
short waves.

In the filtered hydrostatic prediction system, diabatic effects represented

by 4R in the thermodynamic equation, are implicitly parameterized. Accord-
dt

ingly, the differential equation (5) for the mixing ratio r has to be solved
separately with u, v, u-information obtained as a solution of the signal
generation process. This is fully consistent with the finding of Smagorinsky
et al [1970] that "a three-dimensional specification of the mass field in
the extra-tropics, or preferably the horizontal wind field, will determine
the vertical velocity distribution and the humidity distribution." Accord-
ing to these authors, an effective initialization is a prerequisite for
forecasts beyond about 5 days. As mentioned above, improved initialization
is the subject of section V. Equations (16), (17), and (22) with u H 0 are
useful for providing a dynamic boundary condition in the stratosphere which
is generally strongly stratified and in approximate radiative equilibrium.
Further, the sufficiency of relatively few levels and the non-necessity of

2 )The signal generation process was presented by the author in the context
of weather predictability at the IUGG XVI General Assembly, Grenoble, France,
August 25-September 6, 1975, was, however, not published.
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extreme horizontal grid resolution for hydrostatic forecasts becomes
apparent which is in agreement with findings by the National Weather
Service [ L',78 -]).) In agreement with tile statement by Haltiner and Martin
Ii-571 that internal predictors of the branches of the general circulat"ou
do exist, the sig 'nal generation process identifies these predictors is
u and v. ttowever, this process is still non-stationary in nature, ILT

stationary statistics employing as a predictor will, thereforL, have I1o
comparable success. inherent limitations of both the primitive equation
or message generation process and the filtered equation system can only
be overcome by a non-hydrostatic generaLion process outlined in section V.

The desirability of a selective filter to damp inertia-gravity .,aves in
numerical prediction with the primitive equations has been stressed by
several authors. According to Morel and Talagrand [1974], "inertia-
gravity waves are indeed generated in the real atmosphere by orographic
obstacles, nesoscale disturbances, strong cumulus convection, locnl heat
sources, but the fact is that there is normally very little energy in
these modes so that the atmospheric flow appears to be always very close to
geostrophic balance." In marked contrast to this situation, numerical
general circulation models based on finite difference or otherwise
truncated (in Fourier space) versions of the same governing equations,
are very sensitive to local perturbations and are likely to sustain an
inordinate amount of inertia-gravity waves which show up as high spatial
frequency "noise" in the computed flow pattern. Hence, there must exist
selective damping processes which operate in the real atmosphere to restore
the ,eostropic halance, and yet do not operate in numerical models" emphasis
added). In order to damp the gereration of strong divergences and to avoid
unnecessary strong damping with respect to vorticies, the above authors
recommend the inclusion of a damping term in the equations of motion:

-- + ..... K V (div V) (25)
at

Similarly, Dey [1978] proposed to introduce a damping term in eq. (12):

a div V + .... A2 div V (26)
at

The solution of the diagnostic equation (22) can be reduced to a two-
dimensional problem by computing a preliminary solution l by means of the
prognostic equation (23) which would suffice for short-range forecasts.

The terms involving -, a-s a would thus be known. Hereafter, eq. (22)
aXap a ya ay

3 )Little improvement in 48-hour forecasts was obtained by improving the
seven-level horizontal tesulution form 174 to 87km or by improving the
Nested Grid Model from 198 to 99km.
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reduces to

a2 a20  a2 €

A ax + 2B a + C - F(x,y) (27)
x Txy y

for each isobaric level. With the geopotential * available at the upper
pu by virtue of a dynamic boundary condition and at the earth's surface p*,
and with 01 given everywhere laterally, eq. (27) may be solved for suitable
small domains. If these remain fixed for routine forecasts, eq. (27) may
be formulated in matrix form as

MikOk = Fi + fi (28)

with the solution

k = (Mi k)- (Fi + fi)  (29)

where the terms fi arise from the utilization of lateral boundary values *1B
Alternatively, appropriate iteration and relaxation algorithms may be
developed.

IV. IMPROVED TN!TIALIZATION. A filter equation less effective than the
diagnostic eq. (22) results from the condition

div V - 0 (30)
dt

in eq. (12). Divergence production is thus eliminated, and the truncated
part of eq. (12) can prognostically only be used in conjunction with the
vorticity equation (16) and a diagnostic u-equation compatible with the
truncated part, also called balance equation. Such a system was developed
and advocated by Thompson [1961]. The generally applied special balance
equation including only the stream function , and the geopotential 0 reads
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This equation, which does not provide for an intricate coupling between the
variables t and or rather between *, x, and 0, has been employed by many
authors including Bolin [1951], Doos [1965], Knighting [1965], Gerrity and
Chu [1978].

Miyakoda and Moyer [19661 developed a technique of solving the clas-
sical balance equation and, implicitly, its associated w-equation using
uiler-backward time differencing which, when tentatively used, filters

out the high-frequency modes. In their application to the non-linear

barotropic equations, they imposed the conditions ( ) - 0 and ( =-- . 0,
tto  t to

where X is the velocity potential. Nitta and Hovermale [1967] presented an
improved dynamic initialization scheme free of the above constraints on
the horizontal divergence by an actual iteration of forward and backward
forecasts around the initial time with the Euler-backward time difference.
They applied their scheme to the equations of motion which govern an incom-
pressible homogeneous atmosphere over a rotating flat domain. From their
numerical experiment they concluded that their method was unable to re-
produce the amplitude of the divergent components. In conjunction herewith,
convergence of their process was discouragingly slQw. Nevertheless, the
authors emphasized that the attainment of a balanced state between mass
and velocity fields is a basic prerequisite of initial data for forecasts
with the primitive equations and in addition one of the basic goals in
objective analysis. In his analysis on the adjustment toward balance in
primitive equation weather prediction models, Okland [1970] concluded that
one cannot expect to abtain a good balance for a multilevel model by dynamic
balancing since the balanced state is relatively more transient under baro-
clinic conditions.

The above experience is consistent with the fact that the primitive equations
are not synonymous with filter equations. In fact, an optimal u-equation
is obtained by adaptation of the prognostic filter equation (23) to the
thermodynamic equatidn (4). It is then with H2 from eq. (9)

H2 ~2+f+ 2 ). -a2  a -- - = F(xyp) (32)
ap axap xay ayap ayap

H2 >,P + >° °(f2 +&2)" 1\ a )0 (+2,)2J (33)
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The real 4-field will, in general, satisfy the filtered 4-field which is
subject to the inequalities (33). Otherwise, suitable artificial corrections
have to be made. In order to solve eq. (32) it is first necessary to
determine a stream function p(') from eq. (22) with v = =0. A

first approximation w(l) may then be obtained by setting A - Xw where X
has the character of a regression coefficient, in agreement with a suggestion
by Eliassen and Kleinschmidt [1957]. Thereafter eq. (32) is suitably formulated
as

(f2 + A24) 2 H X (p)w = F(p) + G(w) (34)
ap2 2

Following determination of w (l) from eq. (34) with G(w) = 0 under consideration
of Wu = o for Pu and w* for p*, to be performed at all applicable grid points,
G(w(1 )) can be calculated. In this way, w(1)may be iteratively improved.
Numerical underrelaxation may be indicated to achieve satisfactory conver-
gence. It will probably be impractical to also consider successively
improved u and X--values in the w-solution. Final w, u2, v2 -values should,
however, be utilized to find an improved stream function i by means of eq.
(23).

V. NON-HYDROSTATIC WEATHER PREDICTION. As discussed in sections 3 and 4,
hydrostatic models suffer from the requirement of hydrostatic and hydro-
dynamic stability which, in turn, do not permit a reasonably deterministic
inclusion of the moist-adiabatic process and a computational grid of high
resolution. The non-consideration of mesoscale convection and insufficiently
reduced grid-scale diffusion account for a useful hydrostatic forecast time
limit [DoOs, 1970] of about 10 days.

According to Holloway and Manabe [1971] one of the most serious difficulties
in designing a numerical model of the general circulation is in the para-
metrization of moist convection. In case of a negative static stability
they adjust the super dry-adiabatic lapse rate to the dry-adiabatic lapse
rate so as to simulate the effects of strong mixing by dry convection in
the free atmosphere. The adjustment is performed in such a way that the
sum of potential and internal energies is conserved. Their convective
scheme in the case of super-moist adiabatic lapse rates is more complicated
and requires the solution of 2n simultaneous equations for the determin-
ation of n temperature and n mixing ratio corrections under the assumption
that the sum of potential, internal and latent energy is conserved during
this adjustment. These adjustments implicitly realize the inadequacy of
hydrostatic equilibrium in accounting for negative effective static stabil-
ities. Sunquist [1970] reports that various authors, utilizing hydrostatic
models in which the rate of heating was set proportional to the vertical
velocity, obtained unstable results in a few hours because of a rapid
growth on the smallest possible scale of the system. Consequently, he
treats the development of tropical cyclones as a forced circulation driven
by the heat released in convection eplls. His approach is consistent with
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the convection adjustments applied by Holloway and Manabe. In order to

extend the effective range of numerical weather prediction, Lorenz I P'J(!Jl
proposes to formulate more appropriate equations or more realistic statist:
assumptions, lie also suggests that ore might well obtain a considerablyv
longer range of predictability by including a spectral gap somewhere be-
tween the synoptic and cumulus scales and notes that such systems 1s l ar,,
Cumulus clouds are not randomly distributed throughout the atmosphiere, but
have a preference for regions containing such meso-scale systems as squall
lines and fronts. These in turn are not randomly distributed, but prefer
certain locations relative to larger-scale synoptic features. With refer-
ence to the prediction of convective clouds and the precipitation falling
from them, Monin [1'.'72] distinguishes between free cumulus convection and
forced cumulus convection. The former is observed in middle latitudes
over areas occupied by cold air masses and determined primarily bv the
humidity field and the energy of the instability of the lower troposphere.
Forced cumulus convection is observed on the lines of horizontal conver-
gence (tropical cycl,,nes); it is determined primarily by the humidity
field and the horizontal convergence. Accordingly, forced cumulus
convection appears to be more amenable to large scale analysis, i.e., by
the (x, y, p, t)-system, which has been verified by Charney and Sunquist.
On the other hand, there is a bilateral interaction between large scale
and mesoscale processes. Since cumulus convection cells have horizontal
diameter on the order of 50-80 km, it would be desirable to use a predic-
tion grid system with a resolution of 10km which would also be adequate for
jet stream regions of high intensity. Due to the fact that heat of
condensation has an important destabilizing influence which manifests
itself immediately in vertical motions, utilization of a high-resolution
grid would be most appropriate. Such a grid, consistent with the incor-
poration of twenty or more levels, would sufficiently cope with fronts,
the jet stream, and tropical storms. The Committee on Atmosphere Sciences,
National Research Council [1971] has stated that vertical convection and
condensation play important parts in mesoscale phenomena and that severe
mathematical and theoretical difficulties exist in developing general
prediction models for these smaller scales so that the hydrostatic approx-
imation, heretofore essential to general circulation theory, cannot be
applied to the smaller scales. In their investigation of the effect of
horizontal grid resolution in an atmospheric circulation model, Miyakoda
et al [1971] affirmed a former result that the further the integration
period is extended the higher is the required resolution. In particular,
the detailed structure of fronts become more realistic for a grid size of
about 250km as compared with a prior grid size of approximately 500km at
mid-latitudes. In this connection it has also been mentioned that the
horizontal eddy viscosity coefficient is proportional to the square of a
characteristic length related to the grid spacing and to the deformation,
the latter becoming more pronounced for smaller scales. Significantly,
the higher resolution improves the quasi-stationary or forced mode. The
wave amplitude pertaining to the total forecast (forced and free mode),
however, was underestimated. This might be due to a still insufficient
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resolution and/or to some missing physical process. Evidently, for the
lattice spacing under consideration (N=80 or about 125km), use of the
hydrostatic prediction system has some dampening effect. The wiggling
in the flow field, noted by the authors, became stronger for the N=80
model in comparison with the N=40 model, partly due to the nature of
convective adjustment. This is another indication of the shortcomings
of the (x, y, p, t)-system. Hence, the requirement for improved equations
would become quite stringent for an N>160 model.

Provided that sufficiently dense and accurate initial fields of temperature,
ground pressure, humidity, and ocean surface temperature are available, a
non-hydrostatic forecast would require the determination of the initial
wind field by means of an equilibrium initialization in the (x, y, z, t)-
system. Such initialization, always possible on a data scale greater than
the minimum hydrostatic scale, may be achieved by a diagnostic initializa-
tion or a combination of diagnostic and dynamic methods. Both techniques
would, however, depend on a diagnostic equation for the vertical velocity
w which, in the hydrostatic case, coincides with the equation of con-
tinuity. The diagnostic initialization, including the derivation of w,
is shown in the Appendix. Following initialization, a computation grid
of higher resolution is employed. In a simplified form, i.e., in non-
spherical coordinates and without diffusion terms, the non-hydrostatic
system would consist of the familiar equations

du - 1 ap +f (35)
dt p ax

d y_ I t _-fu
dt p ay (36)

1 dp div V3 = .u + .v + aw(37)
p dt ax ay 8z
Fd 1  V I (38)
F T - F FdivV3 +-c

dt CP dt

dr - 6 F3 div V3 (39)dt

w = w [u,vp,Tr ,(xy)] (40)

This system, where V3 is the 3-dimensional velocity vector, where w is
expressed symbolically, and where F1 , F2 , and F3 are functions dentifiable

in the Appendix, must be supplemented by equations specifying.t as the
dt
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rate of addition of heat to a unit mass of air, and an adequate model for
the prediction of ocean surface temperature. The system (35)-(40) to-
gether with the supplementary equations and under consideration of
appropriate boundary conditions, would generate adequate computation
_rid fields in a few hours. Since it is not restricted by ellipticity
conditions and is capable of fully utilizing the initial scalar fields,
it exhibits a partial memory on the mesoscale.

It should be pointed out that the non-hydrostatic system discussed above
constitutes a mesoscale signal process because of the diagnostic w-
equation (40) and its associated finite grid representation. High-
,requencv gravity-inertia oscillations and those correlated with sound
waves are, therefore, filtered out. In comparison, the hydrostatic
signal process includes two diagnostic equations because of the require-
ment of hydrodynamic stability, synonymous with the suppression of con-
vection and the exclusion of mesoscale phenomena.

In contrast to the w-equation, the w-equation is a second-order differ-
ential equation. If the former can accommodate 10 levels, the latter is
compatible with the incorporation of 50 levels. A similar resolution
increase results in the reduction of the minimal hydrostatic grid length
of 50km to a mesoscale grid length of 10kn. As a further necessary
improvement, 6 in eq. (55) of the Appendix should be suitably parameterized,
i.e., not only assume the values zero and one, and eq. (61) of the Appendix
may have to be modified to the structure

d 2w dwf1 (z) -W + f2 (z) - + aw = f3 (z) (41)

due to the differentiation g (x, y, z) in the vertical equation of motion.
dt

This results in the additional term aw where a is a constant. Because of
the complicated structure of f, and f2 , a closed solution of eq. (41)

is not possible.

VI. CONCLUSION. The development of models for numerical weather predic-
tion is primarily a problem of mathematics and includes computer simula-
tions and comparison with realistic fields. It is not only concerned
with the numerical integration of prognostic and diagnostic differential
equations. The ramifications of simplifications of the vertical equation
of motion, the establishment of associated filter equations, correlated
initialization, consideration of a dynamic upper boundary condition, and
the reduction of aliasing effects are also significant and have to be taken
into account.

The hydrostatic filtering approximation also implies hydrodynamic equilib-
rium, i.e., quasi-horizontal flow, exelusion of convection, and a correlated
finite scale. Consistent with these constraints, it is possible to derive
a hydrostatic signal generation process. The vorticity and divergence
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equations of the new system are only compatible with a diagnostic filter
equation which provides an optimal, non-independent smoothing of both
the wind and the geopotential field. The signal process has a non-
deterministic structure, and the application of the new generalized
filter equation facilitates the elimination of pure gravity waves and
correlated high-frequency oscillations while retaining dispersed, lower-
frequency waves which move with a group velocity consistent with a finite
grid representation. The signal process which embodies the concept of
hydrodynamic forecasting implies the need for a restricted number of
levels and does not interact with the continuity equation of water vapor.
A useful forecast of 10 days with respect to wind and geopotential. is
thus possible, while humidity forecasts can only be satisfactorily made
for several days. The derivation of the signal process equations is
intimately related to an optimal diagnostic initialization.

The primitive equations represent a compromise between the hydrostatic
filter equation and the remaining, inherently deterministic prognostic
differential equations. Following optimal diagnostic initialization, as
in the signal process, the message process generates instabilities in
the absence of a non-stationary smoothing device, particularly under
inclusion of rainfall prediction, so that a complicated convective
adjustment is required. Long range primitive forecasts have thus a
tendency to diverge.

Weather predictability extension beyond the limits imposed by the hydro-
static approximation can only be accomplished by non-hydrostatic or
mesoscale forecasting. The prerequisite for a mesoscale prediction
system as a signal process is the derivation of a diagnostic equation
for the vertical wind velocity w in (x, y, z, t)-coordinates, effective
initialization in a "diagnostic" grid of low resolution under utilization
of pressure, temperature, and humidity data, and subsequent integration
of the equations in a "prognostic" grid of high resolution. The diag-
nostic w-equation makes it possible to employ up to about 50 levels and
to permit a horizontal grid with Ax = Ay = 10km. Accordingly, the meso-
scale system, though necessitating a tremendous computational effort,
can be expected to provide useful forecasts for a period of 2-3 weeks.

The determination of global initial wind fields in the hydrostatic and
non-hydrostatic systems requires the availability of measured winds in
the equatorial region.
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APPENDIX**

Generalized Optimal Filter Equations Free of If ydrostatic Limitations

7. Generalized Optimal Filter Equations Free of Hydrostatic Limitations. In
Section 6, we have shown that it is necessary to consider pressure, p. a priori as a
continuous variable and that pressure kinks have to be smoothed out in order to avoid
quasi-infinite pressure gradients in agreement with Haltiner and Martin.SS Discontinu-
ities of zeroth order involving temperature, or rather virtual temperature, require even
stronger smoothing. The application of the differential equations of meteorology is
only possible with smoothed variables including consistently filtered winds. For
simplicity, we omit the filter symbol ^ in the following derivations in which V is the
3-dimensional velocity vector.

Since the filter condition
d 2dt-0 (P V) = 0 (36)

implicitly includes a term ddiv Vs, a system of non-linear partial differential
dt

equations would result which does not permit an equilibrium solution and.
consequently, could not be solved by relaxation methods.

As already mentioned (Section 6), the filter condition iE

d 2Vdt 2 = 0 (37)

which has already been applied in Section 4 except for the vertical wind component.

We now apply eq. (37) with reference to. the equations of motion

du = I p + fv (38)

dt P x

dv _ ! _ fu (39)
dt p ay

dw I av= - Z - g (40)

G G. J. Haltiner and F. L Martin: Dynamical and Phyaical Meteoroksy, McGraw-Hill Book Company, New York,
Toronto, lAndan. 1957.
Section 7, Ritevdis, of Research Note ETL-RN-71-3, "The Derivation and Potential of New Filter Equations for
Nunerica Weather Prediction" by H. Baums von Luetzow. Dec. 1971. AD 741788.
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with the intermediate result

d. l1p .a d
dt ax pdt ?. -p T- (fv) 0 (41)

d p d4 
)pdt ay -pdt- ay dt2(fu)0 (42)

dp I dp Op z 0dt az --Pi A (43)

d
to -i.(fv) in eq. (41) and -4- (fv) in eq. (42), respectively, and in view of the

continuity equation

Idt -divV 
(44)

we arrive at

F + p divV - (u P + v .P + ._w)ax ax \ax ax xay ax az,

+P + fo) ax +
+fpiP +fL -vp u v - = 0 (45)

a F + _p div V -_(Lu p + _v IRp a Wp +
ay ay ayax ayay ayaz +

+f x fv P + v L =0 (46)

k x V) a ay)

aF + 2L div V -au a +v L-2 + w -0 -0 (47)
az az 3) R ay -z" a I

In the next step, we have to express F as a time-independent function which
linearly involves the divergence au + ±! + a.. The thermodynamic equation reads
in a very general form

dt r.L \ + I k +,-T- k - I (48)
\eCpT] +

P T P,-- L CP
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where r, designates the saturation mixing ratio. 1, 600 cal I ,cp .2405 cal

(deg C)I the specific heat of (hy air at constant pressure, c = 1.0 cal ' , the specific
C - c

heat of water, k - P .2848 where c, is the specific heat of dry air for constantep

volume, pL the density of dry air, and aq non-precipitative heat added to a unitrL L

mass of air. Wiith a - eq. (48) may also be written in its time-dependent form

dInr dnT dInpL - 1 t3 (49)a + ( I- k- a+ 4.2 r.)--d-F-- k d(49T)t
dt dt -cr dt

d In r,
Elimination of the term d, in eq. (49) by means of Smagorinsky's and Col-

lin's relation
6

dlnr, dInT dInPL
dt - -) dt - dt (50)

%ith - L which involves L as the latent heat of condensation andwith"/ -1.608 A*RT

A*' as the mechanical equivalent of heat leads to

1-k+a(y-2)+4.2rI dInT dlnpL _ 1 f (31)
k r i - (+T F

From eq. (50) and (51) follows

d In r, ,k + a -I -4.2 r. dinPL
dt - I-k+a(y-2)+4.2r. dt

+ -I 1 A dnp1  A dlnp+ 1-k+a(,y-2)+4.2r% e pB" dt LB dt (52)

Under consideration of

!d = r d - 0j O.6 pT -jj-53
-= R [(1 +0.6r)T dLP+(I + 0.6r)p + T (53)

which follows from the equation of state, in view of
d in r d In r. (54)d"---r = 6 dtnr

dt dt

J. Smagorinsky and G. 0. Collins: "On the Numerical Prediction of Precipitation," Monthly Weather Review 83,
1955.
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with

OifdivV < 0 orr < %

lifdivV > 0 andr = r. (55)

and because of

- = 4 - 0.6dr
PL p (56)

eq. (53) can be formulated as

F = . [B+k+a A (kja 0.6) 6 r] pdivV+ RL P dqB B Becp d t

= _ Mlr,61 pdivV+N -

- Mp+-U + )-+ + N . (57)

Substitution of eq. (57) in eqs. (45) through (47) results in the linear diagnostic
filter equations

(a2u v a w [a(Mp) ap (,u av a )
r axa 2  axaz ax axi\x a a)["° °.+ ++ a +)au ap + - + -a a + fu

---- ax3 xa-z \ ay

+vp -L- +Vy a (N d = 0 (58)

M( a2 U+ a2 V+ a2W + a (Mp) -api/tau +av +aw\axay +a7 + -1+1 y T - + +j + -a-I-

2u ap + a,,- !p +. p lap_ fV)
ay ax ay ay vy az +/

- u -- + v a - N = 0 (59)
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NI +~ 2L + a2 \a (Nip + a Pl + a Va+w\i kaxaz + ayaz + -T, I az az j1ax 8 )

Uap - + a N - 0 (6h,
az x Bz ay -~K-' K(It ) -0

Equation (60) provides an excellent diagnostic equation and reduces the numeri-
cal relaxation work considerably which is only required in eq. (58) and (59). In the
form of an ordinary linear differential, eq. (60) appears as

a-W + a(Mp aw + NIP(~ + av~ + [a(Mp) (au +a\
Mp az az \axaz ayaz/ + az az a N)

+ au av a ( 0 (61)

-K ax + az ay az N =(6
With

a2 u + a2 v +1 a(Mp) I/au av)
axaz aya +  ( az az Jax +

+i +a. N a t (62)
az ax a ay a " (62)

the solution of eq. (61) is
z z

(Mp), f + C
1 1

Atnthe lFw(z)bdzn+arydw e +-Cx (63)

At the lower boundary, w = uB VB ay with 0 (x, y) as the geopo-

tential of the ground. Accordingly,

C2 = U O+ v,-L. (64)

Since, at the upper boundarywB2 = 0, the other integration constant yields the
value2

zzC [ 1 I(Mp)~ z 1  Zf (Mp)z In (Mp)z z)d dz + C2 (5

4/ (Z I *
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We ha% c to remember that the saturation mixing ratio r, = r (p, T) and 'y =  (T)
and that it is necessary to obtain first a solution of eqs. (58), (59) and (63) with 6 = 0
whereupon the criterion (55) is applied. One or two iterations will then yield satisfac-
tory results, Unless 6 has some variability along the lines suggested by Smagorinsky,5 7

the variable 6 should be about 0.8 instead of 1.0 in agreement with numerical
simulations.

It is to be expected that the under-relaxation factors 6 in the iteration scheme

u(n+i) = u(n) + 6 G Iu(n) v(n),w(n)I

= v(n) + 10 G2  ("(n), V(n), w(n)] (66)

withu- I vo) = I p ,w(l) = 0
fp < ay fp'R

in which G, and G2 represent residuals of eq. (58) and eq. (59), respectively, have to
be quite small in equilibrium-scale solutions (Ax = Ay > 50 kin, Az > 1 kin) involving
strong divergence and vertical wind velocities. Since u0) and v(1) become singular at the
equator and convergence is slow in very low latitudes, fine grid solutions are not possi-
ble in the vicinity of the equator. Due to the fact that the mass field cannot be accurate-
ly determined in the equatorial region, horizontal winds, obtained through the tracking
of floating balloons, and additional temperature measurements would facilitate the
computation of all desired quantities. The use of diagnostic filtering equations for this
purpose has been mentioned by several authors including Mintz 7 though in
connection with the more restrictive hydrostatic prediction system.

Utilization of the hydrostatic approximation with respect to height determina-
tions weakens the application of the filtering and associated prognostic equations as
far as smaller scales are concerned but still allows the computation of divergences
exceeding the vorticity on a constant pressure surface. This is of importance pertaining
to the immediate applicability of the new prediction system.

As to the upper boundary condition, the assumption w = 0, of course, has to
be made for a finite height. In this respect, the condition var w = Min. would provide a

iu
good separation criterion. This has to coincide with the criteria var - -= Min.,

az
var - Mi., var - Min., var Min., as far as interpolation from aaz az az
lower to a higher level is concerned, i.e., to an average equilibrium boundary which
exists at 20 - 25km height.
57Y. Mintz. "The Four Basic Requirements for Numerical Weather Prediction in Global Weather Prediction," ed. by

Bruce and Kiely. Holt, Rinehart and Winston, New York, 1970.
SS). Smagorinsky: "On the Dynamical Prediction of Large-Scale Condensation by Numerical Methods,"

Geophysical Monograph No. 5, American Geophysical Union, 1960.
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SOME BESSEL FUNCTION IDENTITIES

ARISING IN ICE MECHANICS PROBLEMS

Shunsuke Takagi

Physical Sciences Branch
U.S. Army Cold Regions Research and Engineering Laboratory

Hanover, New Hampshire 03755

ABSTRACT. Some Bessel function identities found by solving problems

of the deflection of the floating ice plate by two different methods are

rigorously proved. The master formulas from which all the identities are
derived are in a Fourier reciprocal relationship, connecting a Hankel

function to an exponential function. Many new formulas can be derived
from the master formulas. The analytical method presented here now open-
the way to study a hitherto impossible type of problems- the deflection of

floating elastic plates of various shapes and boundary conditions.

I. INTRODUCTION. By solving several problems of the deflection of
a floating ice plate (i.e., the deflection of a plate on a continuous

elastic foundation formulated by Winkler [9]) by two different methods,

Kerr [4,5] presented a number of equality relationships among Besse]
functions. In this paper, the analytical derivation of his formulas i

presented. His formulas (six in all) reduce to the following t,.,, ':,

formulas expressed in the Fourier reciprocal relationship:

e H ( e 2 e2 -[) d - 2

f0 VI P

T

e-aVx 2 2 - ix dx _ H (1) -2-
je = i (6e aT-) (2

where H(1 )( ) is the Hankel function of zeroth order; x and are real
0

and a nonnegative such that a 2 + 2 # 0; and 6 is complex such that 1, 1 0,

1argB1<7r/2, x2+82  0. By VZ we mean such a branch as Rev/ z 0. The
master formulas may be transformed to symmetric forms:

H (Be x2t 2 ) ei '
x + iny dxdy = (-3)

w i

S1 e d~dn = r2i H (1) (Be 2 x2+) . (4)
ODO
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In the following, we prove the above formulas, transform te two
master formulas to derive all the formulas introduced by Kerr [4,5] as
well as some new ones, and finally show that the analytical method pre-
sented here lays the foundation for building a mathematical machinery
for solving various shapes of floating ice plate under various boundary
conditions.

II. PROOF OF FORMULA (1). Use of Barnes' integral representation

of H(l) (Z)
0

-c+oo

iri )  1 f r2() ) ds (5)0 2--if - )d )

where c is any positive number and Jarg(-iz)j< 7r/2 [8, p. 1921, transforms
the single integral on the left-hand side of (1)

iX&n
11= rif e i  H (1) (Oe- /a2+) dE (6)

to the repeated integrals

I i d f rP C do. (7)
-OD

The absolute convergence of integral (5) carries over to (7), because the
condition larg(-iz)l< 7/2 in (5) transforms to jargSj< n/2 in (7), which
is one of the prerequisites in the master formulas. Therefore, the order
of integration in (7) may be exchanged. Moreover, restricting the
original range of a, which is a 4 0, to a > 0 , we let E = an in (7).
Thus (7) becomes

=a f 2 (_S)(' 2)28 d8 f eiaxn (l+n2) 8 dn (8)l = 7i 2--

To evaluate the internal single integral in (8)

MI = f eiaxz (l+Z2)8 dz

-00
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Fig. 1

Transformation of integral M on the z-plane.
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by the contour integral method, we first note that the original range of
x(i.e., - - < x < -) may be restricted to 0 < x, (where the case x = 0
is excluded), because II is an even function of x, as the right-hand side

of (6) shows. Consider the contour in Fig. 1, that starts at origin 0,
goes along the positive real axis to A, i.e., z = - ; takes a 90 degree
tuin along the infinitely large circle to reach B, i.e., z = i , comes
down along the imaginary axis to C, i.e., z = i ; makes a 360 degree turn
along an infinitely small circle clockwise around C; goes upward along
the imaginary axis to reach D, i.e., z = i- ; takes a 90 degree turn along
the infinitely large circle to reach E, i.e., z = - - ; and finally
reaches origin 0, thus completing a circuit. No singularity of the

integrand exp(iaxz)(l+z2)s exists inside this closed contour. Among the
integrals along the paths mentioned above, the integrals along AB and DE
are equal to zero, provided that a > 0. The integral around C is also
equal to zero. Therefore, on the condition that a > 0 and x > 0, we have

Ml = f 1+ f e iz(l+z2) 'dz
B C2

where C1 and C2 are the initial and terminal points of the infinitely

small circle around C. Letting z = it, where t is real, M1 reduces to

M= i(1-e -2i) f e-axt(1-t2)S dt
1

We now let s be

S=- + ip

i.e. let c in (5) be , where p is a real number, in order to integrate
H1 by use of the formula [8, p. 172]

K(Z) - r(+z) V e-t(t2-1) -h dt, (9)

which is valid when Re(v4+ ) > 0 and largz{ < /2 . These two conditions

are satisfied when we let v - and z = ax to integrate M1 . Thus,

letting

_1t2)8 e tIL I )'

H integrates to

12
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M = - 2 sin 7s -(Sx(s+)+ Ks+k (ax)
, T (- -) S +

2

In this way, (7) transforms to a single integral

2 s (3+ K+ (ax) ds.

Tr = .F (s 2snT° r-ax S+ K+-
7T- _ _ )(o)2S.F - ) ds

Changing the Gamma function of the negative argument to the positive

argument by the reflection formula

-iT
F(-8) = (l+s)sinrs

II becomes

K (ax)(, S
Il '/ 2iTa T P+- af6) ds .

S-i sinTrs F(s+l) Zr

Taking the residues, II integrates to

8T (-l)(2a) Kn+ (ax)
I n=O

Replacing Kn+(ax) with

C 2
K (z) = ( )  I exp(-t- _y)t dt,
V 24

0

i.e., a formula found in [8, p. 183], 1 becomes

f~ 2Ii a/7- 1=: (_i) n  (a )28 n ex(--a X2 dt

n0 fo 4- e - t "-

The order of the summation and integration may be exchanged, and we get
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= a a 2 (x 2 + 2 )) dt
f exp(-t- 4t

0

Letting t = -2, this becomes

=22a( exp(_- 2 
_ a + ) 2) d . (10)

0

To integrate (10), we introduce a lemma:

CO e -  
C- dC = e- 2 i -~

0

provided

nn - - < argii < niT +

44

where n is an integer.

When p is in the above range, the above integral is convergent. To
prove the lemma, we first note that the integral

odF
LI= oe-V 2 2-E-2 dE

0

transforms to

L1  = e -2 N1  (i

where

1I  e- g-1 )2 d . (12)
0

Letting

and changing the resulting contour O -u'- -  to 0- , we get

N,- f e-(Uflf) d (13)

0
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Addition of (12) and (13) yields

2NI = 4 ( 1+  d.

Letting

we get

2NI =- f e dt.

Changing the range of integration to the one from _c to +o , N1 integrates

to

N =

Substituting this value into (11), the lemma is proved.

Letting ji be

in the lemma, (10) is integrated, because p above is obviously in the
range prescribed before. Thus, under the conditions x j 0 and a # 0,
Formula (1) is proved. Applying the analytical continuation, the condi-
tion a # 0 is extended to the condition a2 + 62 O. Because the
integral is convergent at x = 0, the condition x # 0 may be removed.
The proof is thus completed.

III. PROOF OF FORMULA (2). Although Formula (2) is the Fourier
inverse of Formula (1), we show an independent proof in view of the
importance of the formula.

On the assumption that a2 + &2 # 0 and 8 # 0 , letting

a = rcosCa

= rsina (14)

x = 6Sinhz

7T Tr- < 2

the integral
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12 =J 1 eax+ - dx (15)

transforms to

12 = f exp(-r6Cosh(z+icc)) dz , (16)

L

where the contour L is a curve on the complex z = u + iV plane (Fig. 2)
defined by

z = Arcsinh(x/8)
X__ (17)

= log(7x + + 1)

with parameter x in the range of -- < x <

Letting x=O, we have z=O. Therefore, contour L passes through the
origin. When x - + - or - m , z asymptotically approaches log(2x) - loge,

or - log(-2x) + log5,respectively; in other words,the imaginary part V
of the complex variable z satisfies the conditions

lim V + arg6 = 0

(18)

im v - arg = 0

X - 0

The curve L+ defined for the case 0 < argB < w/2 is shown in Fig. 2.

The curve L- defined for the case -n/2 < argS < 0 is symmetrical with

L+ with regard to the real axis.

Letting u be the real part of z, we find that, as x - or-
the real part of -r8Cosh(z+a) approaches asymptotically either

- - rI61 e Ucos(argB + V + a)2

or

1i rfa e-ucos(argB - V - a)2

respectively. Because the power of the exponent in (16) must remain
negative as I , the conditions

-632
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Fig. 2. Curve L+ defined for the case 0 < argB < w/2 in the complex

z u + iv plane is shown for parameter x ranging over - oo < .
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71T7
- < arg + limv + <

(19)2 2

X - +-o
7T.< argO - .l1mv a~ 2

must be satisfied. The conditions are satisfied by (14)4 and (18).

Introducing t defined by

t = z + ia (20)

12 becomes

12 f exp(-r Cosht)dt

The contour L+4io may be moved to the real axis, because doing this is

ltmp + a = 0
tantamount to letting X 0 , which is evidently permissible in the

prescribed range of 8 shown below (2). Thus we have

12 f exp(-rOCosht) dt . (21)

To integrate 12 in (21), we introduce the following formula in [7].

Provided Ir(z) > 0
inO

0 (z) exp(izCosht) dt . (22)

Comparing z in (22) with -rO in "21) we have Im (z) =Re(a); therefore,

the condition I (z) > 0 is satisfied in the prescribed range of B • Thus

12 integrates to

7ri
.(l) 2~I - riH (Be r)

2 0

completing the proof of Formula 2.
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IV. TRANSFORMATIONS OF FORMULAS (1) AND (2). We list the formulas

found in [i], 141, and [51 that can be derived from Formulas (1) and (2).
The formulas we use in the following transformations are

e H (1)(Fex 2 +--2) dC 2 + (23)o~ 0 ivGa+ PL

which is found by exchanging x and a in Formula (1), and

f a P+ 2-ibx dx (1) -2-

e - ii ( FiH e ) (24)

which is found by changing to b in Formula (2).

Assuming to be a positive number, (23) transforms to a real integral

7K - a2+e~x

K 2 e (25)

Letting a = 0, (25) may become

cc

f Ko( x
2
+)d = e- (26)

.%

Letting T = - y , and expressly writing that a may be positive
or negative, (23) may be rewritten to

lTj

( e- H01 )( e 2 x 2+(y-n) 2 ) dn - 2 ei a + Tx (27)
W iya22

We transform this to several forms. When B is real, (27) becomes

00

e±iTi K -(B/x1+(y-ri)2)dr T e ±iau l +ex (28)

Letting 8 bexp(ri/4) with the restriction b > 0 , (27) becomes
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f ian{ r(bV x2 +(y-n) 2-) + ikei(bx2+Q1-Tj7)} di(9

00 (29)

7T ± iay

a2 ib 2

Letting

/a2 + ib2 = p + iq (30)

and adding and subtracting the plus expression and the minus expression
in (29), we find two integrals

f cosanT ker(bx2+(y-n) 2 ) + ikei(b/x 2+(y-n) 2 ) } d-n

= i(p-ig) e - (P+ i q)x cosay

(31)

f sinari ker(bx2+(y-n2) + ikei(b/i2+(-T52) dfl

- (p-ig) e-(p+iq)x sinay,

where

;i $+b 4 ±a2  (32)

Dividing the above two formulas into real and imaginary parts, four real
integrals may be found.

Letting 1 = , (24) becomes

000f a¢/r - ibx dL- a )(3

Differentiating (33) with regard to a, we find
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feibx dx 2a K'(a 2 +b 2 ) (34)/a 2+bo2

Formula (25) is listed by Erdely [1] without proof. Formulas (26),

(28) and (31)2 were derived by Kerr[4], and Formula (34) by Kerr [5].

Because the differentiations and integrations with regard to parameters

inside the integral as well as the assignment of arbitrary values to

parameters are permissible insomuch as the absolute convergence is pre-

served, many additional formulas may be derived from (23) and (24).

V. PROOF OF FORMULAS (3) AND (4). Integrating once more the re-

written Formula (1)

2~ () 2 2 I IE -2
fei H(1)(Be x +y2 )dx = 2 efO I H+l

where IYI takes the place of the original positive number a, we trans-

form the left-hand side of Formula (3)

1 =f ei"Y y f e'ix H (1)( e 2 2  o

3 0

to

3 feinY -IY + dy•

Use of the integral

e IyI W dy 212+2 (35)
f d 

2 +n 2 + 2

~00

reduces 13 to the right-hand side of Formula (3). To prove (35), note

that

J ei - dy = 2 f e-Y/2+82 cosny dy
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Although Formula (4) is the Fourier inverse of Formula (3), we show
an independent proof in view of the importance of the formula. The re-

written Formula (2)

e-Iyl/7B- ixE d i - H()(e 2 t-2+ )

f f1 Y 1 2+_02 0

reduces to Formula (4) by the substitution of the Fourier inverse of (35)

_ 2 n2Y e an •( 3 6 )
e-w

Formula (36) may otherwise be proved by showing that

COe -i'Yz _ -aIl(3
f; z--- dz = a e (37)

by use of the contour integral method, where Re a 0 0.

VI. ADDITIONAL DERIVATION FROM THE MASTER FORMULAS. We prove the
formula

1 ~~~ 2  /T () 2
H o1)(Be 2la +V) H(1)(e x2 +(y-E) 2 ) dE

/ O0

(38)
7ri

= _2 H(1)( 2 __ 2+_2)

where
H(1)~ [Td [ H( 1) W ] = (39)
Ho'l Ld - z 0 1Z J =

Differentiating (24) with regard to a, we find

-a X2+0 2 - ibx dx = i'Oa H( l ) (8e 2 (40)
- o V2 O,

Substitution of H o(l (Oe a+) from (40) transforms the single

integral
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coi 7 i

1 C 'a (1) (Be a-+eF) H") (e 2 x 2+(y-E) 2  d (41)
4 L a--~2 e-o'l 0

to the repeated integrals

14 H( 1 )(Be /x2+(y_ )2) d f e dt

-00 -00O

which, on changing the order of the integrations, becomes

14 f e-a qt -g02 at f e-' t H(1)(e- 2 I 2+(y- )2) d.

Letting y = - y, and changing a to -t, (23) becomes

00 'fri 
--eitn H(1) (B-2+y) 2)d= 2 e -ity - /t + x

e- H (Be lx +(y-n) dri - _ e

Using the last integral to carry out the internal integration, 14 becomes

00

2 _i e-(a-x)/ - ity dt

which integrates to

7Ti

4 = 2 ) H (Be-  (a+x)2+Y2) (42)

by use of Formula (2). Combining (41) and (42), (38) is proved.

Letting B = 1 in (38) we find

Ko )Ko(/x2+(y_)2 )  K (/(a-x)2+y2  (43)

This formula was derived by Kerr [5] with his Indirect method.
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VII. DEFLECTION OF THE FLOATING ICE PLATE. Expressed in ,uidiimcn-

sional form, the differential equation governing the deflection w ol i

floating ice plate sustaining a concentrated load P at the origin

(x = 0, y = 0) is

V'w + w = P6(x)6(y) , (44)

where A2 is the Laplacian operator and 6( ) the delta function. The

solution of (44) for an infinite plate is

w(xy) kei/x 29u2 (45)

as was shown by Wymann [lo bv examinine the nature of the solution of

the homogeneous form of (44). However, his proof does not exactly show that (

is the solution of the inhomogeneous equation (44). We now can prove

this by direct substitution of (45) into (44).

Use of Formula (4) enables us to derive

ke-i - i L 2 e + i xE + i y n ddnl . (46)

With the use of (46), substitution of (45) reduces the left-hand side of

(44) to

7+xE+YT ddT

-OD -OD

which by the property of the delta function [2], is the right-hand side

of (44).

Use of the reciprocal Fourier relationships develoved in this paper
open the possibility of building an analytical machinery for solving the

generic equation

V w + w = P6(x -xo)6(y-y o) (47)

for the deflection of floating plates of various shapes and of various

boundary conditions, which has hitherto been impossible. (Currently only
the image method is used, see [3] or [6]). It is especially encouraging

to note that the solution w(x,y) of (47) is a generalized function j2j.
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SOME INTRINSIC PROPERTIES OF EXACT SOLUTIONS
FOR THE STATIC BENDING OF UNIFORM ROTATING BEAMS*

James T. Wong and Richard M. Carlson
HQ, US Army Research and Technology Laboratories (AVRADCOM)

Ames Research Center
Moffett Field, CA 94035

ABSTRACT. The general solution to the complete static equation
characterizing the static behavior of a rotating beam with constant
stiffness and uniform mass distribution has been obtained. This
general solution is expressed in terms of rotor functions which are
the analytical solutions to a special case of the original problem.
The feasibility of obtaining the closed form solution attributes to
an interesting property of the rotor functions. It was also found
that a modulation of the solution in terms of loadings different by
a multiplicative constant is allowable for the articulated case, and
such a relationship does not hold for the hingeless boundary conditions
unless the blade coning angle equals to zero.

*Published in the Journal of the American Helicopter Society, October
1978.
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DYNAMIC STABILITY OF COLUMNS SUBJECTED TO
NONCONSERVATIVE FORCES

J. J. Wu and J. D. Vasilakis
U. S. Army Armament Research and Development Command

Benet Weapons Laboratory, LCWSL
Watervliet Arsenal, Watervliet, NY 12189

ABSTRACT. The numerical results of a class of problems of linear
elastic stability problems subjected to nonconservative forces and under
various support conditions are presented here. A single solution formu-
lation by which these results have been obtained is described. Accuracy
of these results compared with those reported in the literature is
discussed.

I. INTRODUCTION. Any particular subject of investigation in
applied sciences is always motivated by the desire to understand some
natural phenomena and hopefully to utilize the results of such an
investigation for the benefit of human activities. The study of
structural behavior under nonconservative loads is of no exception.
Since follower forces are a special class of nonconservative forces []b
one is surprised to encounter frequently thequestion as to the relation
between such a study and a real engineering problem. Physically, a
follower force is simply one whose direction follows the structural
deformation as in comparison with a dead load which acts in a fixed
direction independent of deformation. Some obvious examples of
followers forces are!: thrust at the tail of a flexible rocket, jet
engine thrust of anairplane, thrust on the propeller shaft of a ship,
etc. Other examples such as the pressure-and-curvature induced forces
included in the gun dynamic studies are less obvious [2].

Since the problems of follower forces are non-self-adjoint their
treatment is more difficult than that for the self-adjoint problems.
In the classical paper by Beck [3], it was demonstrated that the
stability nature of a nonconservative problem can be quite different
than that of a conservative one. For these reasons, a systematic
approach to this class of problems and an understanding of some of the
basic problems involving follower forces are desirable.

The purpose of this paper is to present a single solution approach
to a class of problems of follower forces, including several classical
examples, to present the numerical results so obtained and to discuss
the accuracy compared with those already published in literature.
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In Section II, the class of problems will be defined by a general
form of a differential equation and a set of boundary conditions. The
solution formulation and its basis is given in Section III. Numerical
results of some specific problems are given in Section IV together with
a discussion and comparisons with data available in literature.

II. A CLASS OF PROBLEMS SUBJECTED TO FOLLOWER LOADS. The class of
problems considered in this paper can be described by the differential
equation

y111 + P(x)y" + X2 y = 0 (1)

where y(x) denotes the lateral disturbance of a beam, as a function of
the abscissa x, P(x) is the axial force always tangent to the deformed
axis, and X is the eigenvalue. As usual, a prime denotes differentiation
with respect to x.

Eq. (1) is a non-self-adjoint differential equation (thus noncon-
servative problem) except for P(x) = constant. If the axial force P(x)
remains fixed in the direction of the undeformed axis, the problem would
be of conservative nature and the differential equation a self-adjoint
one.

y"o + [P(x)y']' + 12y = 0 (1')

Both Eqs. (1) and (1') are well known and the derivations are simple and
they follow the procedures given in such textbooks as that by Timoshenko
and Gere [4]. Boundary conditions considered will be in the following
form:

y" (0) + P(O)y'(O) + kl(0) = 0 (2a)

-y"(0) + k2y'(0) = 0 (2b)

- yt' (1) - (l-k5)P(l)y'(1) + k3y(l) = 0 (2c)

y"(1) + k4Y'(l) = 0 (2d)

where kl, k2 are the deflection and rotation spring constants at x = 0
and k3, k4 are the same at x = 1. The constant kS is related to a
"constant of tangency" Ke by equation

KO = kS - 1 (3)
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so that Eq. (2c) becomes

-y"' (1) + KOP(l)y'l() + k3y(l) = 0 (2c')

where now, if P(I) # 0, e = Koy'(1) denotes the angle that P(l) is to be
rotated with respect to the tangent of the beam at x = 1 (Figure 1).

Eqs. (2) simply state that the total shear force and moment at
x = 0 and x = 1 must be zero. As k, approaches to infinity, Eq. (2a)
requires that y(O) = 0. Thus a zero deflection boundary condition is
arrived at. Similar options are provided for by other spring constants
k2 , k3 and k4.

Three different P(x) will be considered in this paper: (1) P(x) =

P, a constant, (2) P(x) = q(l-x), and (3) P(x) = qo/2(l-x)2 where P
represents a concentrated at x = 0, q is a uniformly distributed
follower force density and q. denotes the maximum of a linearly varied
follower force density. With the special boundary conditions of a
cantilever, case (1), (2) and (3) become the classical problems first
solved by Beck [3], Leipholz [5] and Hanger [6], respectively.

III. SOLUTION FORMULATIONS. The solution method used here is the
finite element unconstrained variational formulation which has proved
to be efficient and simple to use for solutions of non-self-adjoint
problems [7,8]. Finite elements are used in the usual sense that the
unknown function is approximated by piecewise cubic splines. An uncon-
strained variational statement is established and used so that none of
the boundary conditions need to be satisfied a priori. An outline of
the formulation will be given here.

Introducing an adjoint field variable y*(x), it is a simple matter
to see that the following variational statement will lead to the differ-
ential equation (1) and boundary conditions (2):

6I(y,y*) = 0 (4a)
1

I f (y"y*"-P(x)y'y*'-P'(x)yly*+?Xyy*)dx
0

+ kly(O)y*(O) + k2 y'(O)y*'(0) + k3y(1)y*(l) + k4y'(l)y*1(l)

+ k P1()yI(l)y*(l) (4b)

The fact that Eqs. (4) lead to the given differential equation and
boundary conditions for y(x) independent of y*(x) implies that one can
take the variation of I at y*(x) = 0 and (61) *Q = 0 still leads to
the original problem. Hence our formulation begins with

(6I) =0 (5,)

-647-

F



OE=KeY 1)

y
Y(I

Figure 1. Boundary Condition Associated with a Follower Force:
Constant of Tangency K e.
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Or, 1
f [Y16y*" - P(x)y'6y*' - P(x)y'6y* + x 2 y6y*]dx
0

+ kly(0)6y*(O) + k 2y'(O)6y*'(0) + k3y(1)6y*(1) + k4y, l16y*,(l)

+ k y'(l1)y*(l) = 0 (Sb)

Finite element discretization enters when the beam is divided into
L equal elements and Eq. (Sb) is written as

L 1 [L3y(i) 6 y*(i)1 - LP(i)( )y(i)' 6 y* (i)'
i=l 0

LP(i)'y(i)1y*(i) L) ]d

" kly (1 )(0)Sy*()(0) + k 2 L2y(1) (0)6y*(1) (0)

+ k3y(L)(1)6y*(L)(l) + k4L
2y(L)'(l)6y*(L)I(l)

+ k5y(L) (1)6y*(L)( 1 ) = 0 (6)

In obtaining Eq. (6) from (Sb), one has effected a change of coordinates
from x (global) to E (local) such that

= (i) = Lx-i+l

d= Ldx
(i) (7)

yWx y ()9
d d L 4 y('i) Ly~i),~y'x I W x y (x) = L ±-y() = LyM )

y() dx dC

etc.

Introducing generalized coordinates vector y(i) and shape function vector
a(g) such that

yM)ro) = aT( Y i  
(8a)

wit I(i)i
with y i)T .{Yli) y 2(i) y3 i) Y4i) (8b)
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a(C)= 1 0 -3 2 1

0 1 -2 1

(8c)
0 0 3 -2 A2
0 0 -1 1 C

where a superscript T denotes the transpose of a matrix. One observes that

ylci) = y(i)( 0 ) Y 2 (i) = yi(O )

Y 3ci) = yIi)(1) Y 4(M = Y(i)'( 1 ) (8d)

The counterparts for y*() can be similarly defined.

In terms of y(i), y*(i), a, Eq. (6) can be written as:

L 1 1
1 6 y*(i)T{Laf a"CE)a"lTcE)dE - Lf P( )()a'()a'T(E)dE
i=0 0 - 0 1

-LfI~i P( (E)aCE)a (cQdE + - f aCE)aTCQ) y(i)

+ 6y*Cl)T{kla(0)aT(0) + k 2L 2 ' (O)a' T(0)}y(l)

+ 6y*(L)T{k a(l)aT(l) + k4 L2aI(l)aT(l) + ksa(l)aIT(l)}y(L) 0 (9)

It will be convenient to define the following matrices:

IA I a(Q)aT(&)dE A2 z' I a1(&)aVT(EldE

0 01 T1 T

A = a"l(E)a" TC)dE A 4 = f a(C )a T (C )dt
0 0

1 1

A5 = I Eat(&)aT(&)d& A6 = f a(C)aT()d&
0 01T

A7 = & 
2 a'€l()a'T ()dE (10)

0

sl al()aT(0) B4  a'l()a'()

= (1)aT(l) B 11aT()

! 4 T 'la (1)B- a~lla''(l)
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In terms of the matrices defined in (10), Eq. (9) i.s written as:

L
. 6y*(i)T{L3A 3 A1 - LM }Y(i)

i=l ~ L ~L ~

6 y*(I)T{klBI + k 2 L2B 2 }Y(l)

+ 6Y*(L)T{k3B + kL 2B + ksB }Y(L) = 0 (11)

where the matrix MP is defined as

M = f P(i)a'a'Td + f p(i) aaTd (12)
0 0

To proceed further, it is necessary to know the specific form of P(x).
As we have mentioned earlier, three different forms of P(x) will be
considered.

CASE I. P(x) = P, a Constant. In this case, one has

P(x) = p(i)( ) = P
(13)

P'(x) LP( i )())  0

Thus
1

M = Pf a'a'd& = PA (14)
P 01 -2

CASE II. P(x) = q(l-x).

P(x) = p(i)(E) = L (L-i+l-t)
L

P - (15)

L

Thus,
11, 1 T

M -q {[L (i-1)]f a'a'T dE - f Ea'a'T d
-P L 0- 0

or

p= {[L - (i-1)]A - A (16)
-P L .2 5
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CASE III. P(x) = qo/2(1-x)2

i)) o [(L-i+1) - 2(L-i+l)& + &2]

qo i7)

pi)() = _- [(L-i+l) -(1

Thus

M o {(L-i+)2Ila ITd& - 2(L-i.l)f I  d

P 2L2 
f ~ ~ ~

+ f d2a'a'Td&}

0
1 1

- qo {(L-i+l)f a'aTdt - f &a'a'Td
L2  

0- 0
Or,

M q- {(L-i+l)2A - 2(L-i+)A + A7

- {(L-i+I)A2 - AS} (18)

L2  - ~

With M, defined for all three cases in Eqs. (14) (16) and (18) respec-
tively, one can now assemble Eq. (11) into a global matrix equation.
Introducing the global generalized coordinate vectors Y and Y* as:

y T = 1 (1) Y2() y3(1) Y4(1) y3(2) y4 (2) ...... y3(L) y4(L) (y.T {y .I) Y*1 ) Y *(I)y4,(1) y (2) Y (2) ..... y(L) y (L)l( 9

- 1 2 3 4 3 4 3 4

Eq. (11) now can be written in terms of Y and 6Y* as

6Y*T{K - A2M}Y = 0 (20)

Where the global matrices 4 and M are formed by properly placing the
local matrices defined in Eqs. (10) according to the correspondence
between the local and global generalized coordinates indicated in Eqs.
(19). Now since 6Y* are not subject to any constraint conditions, Eq.
(18) reduces to

(K - X2M)Y = 0 (21)

which is solved for the eigenvalue X and the eigenvector Y.
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IV. NUMERICAL RESULTS AND DISCUSSION. It is well known that the
eigenvalue X dictates the stability of the column: a pure imaginary
X is associated with a stable vibration, a real X, associated with
instability of divergence and a complex X, with instability of
flutter [10].

Only cantilevered columns will be considered here. It will be seen
that in all three loading cases, the cantilevered columns reaches an
instability condition of flutter.

CASE I. P(x) = P = Constant. The characteristic equation in close
form was obtained by Beck [3] as

2X2 + Q2 + 2X2coshacos8 + QXsinhasin$ = 0 (22)

where

r Q2

a X + T +

(23)

a2 +Q

For a given Q, the eigenvalue X can be calculated from Eq. (22) and there
are an infinite number of X solutions for each Q. Eq. (22) is solved for
two lowest branches of X using an iterative procedure. The results are
given in Table I. The critical load thus obtained is

QCR = 2.03187
2 = 20.053

which agrees well with the value obtained originally by Beck as QR =

20.05. The results for four lowest eigenvalues presently obtained using
our finite element-unconstrained variational formulations are also shown
in Table I. The first two branches obviously agree well with those from
the exact characteristic equation. It should be pointed out that the
numerical solutions to the Beck problem given in Reference [4] appears
to be inaccurate. A plot of the eigenvalue curve showing the coalescense
of the two lowest branches is given in Figure 2. The data from Reference
[4] are indicated by small circles. The fact that these data points do
not fall on a smooth curve further add to the doubt on their accuracy.
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CASE II. P(x) = o(j_. The numerical values of the four lowest
eigenvalues up to the first critical load are given in Table II which
the critical load is shown to be

qCR = 4.059112

compared with data given by Leipholz as 4.1238n 2 = 40.7 [10] and again
as 4.2058n12 = 41.51 [11]. The coalescence of the first two branches
of eigenvalues is again shown in Figure 2.

CASE III. P(x) = qo/2(1-X)2. Similar data for this case are

presented in Table III and in Figure 3. The critical load of flutter
is obtained as

qocR = 15.26877T2

In comparison, the value obtained by Hauger was qocR = 158.2 = 16.0927r2 [6]

and that by Leipholz, qoCR = 150.80 = 1S.279n2 [12].
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THERMO-ELASTIC-PLASTIC STRESSES IN HOLLOW CYLINDERS
DUE TO QUENCHING

J. D. Vasilakis and P. C. T. Chen

U.S. Army Armament Research and Development Command
Benet Weapons Laboratory, LCWSL

Watervliet Arsenal, Watervliet, NY 12189

ABSTRACT. A hollow cylindrical tube, rapidly quenched for the
purpose of developing a high strength material structure, is analyzed.
The quenching creates severe thermal stresses early in the quenching
cycle while later the material transformation by virtue of a volume
change in the transformed material, causes large transformation stresses.
The transient temperature distributions and the elastic treatment of the
stresses has been treated previously. The present work is an attempt to
consider the therno-elastic-plastic aspects of the problem. The von Mises
yield criterion and the Prandtl-Reuss stress strain relations are used.
Results are calculated based on a new finite difference approach.

I. INTRODUCTION. Watervliet Arsenal has recently been developing
techniques for the production of large caliber weapons using a rotary
forge. Force hammers, evenly spaced at 90° intervals, strike the out-
side diameter of a hot (1500OF-16000 F) hollow cylindrical preform at
the rate of 200 blows/minute. The final outside tube profile is pro-
grammed into the forge itself and the wall thickness of the tube is
varied as preprogrammed. The inside diameter of the tube is maintained
constant by a mandrel which is water cooled. After the tube has bcen
formed, it is allowed to cool to rooif temperature.

Once formed, the tube must then be heat treated. This procedure
begins by heating the tube to 1650°F in an auster.1tizing furnace so
that the austenite phase is developed throughout the material. The
tube is then rapidly quenched so that the desired martensite phase is
developed. This is accomplished by spraying a large volume of water on
both the inside and outside diameters. The tube is finally put through
a tempering furnace at 12000 F.

Interest in the analytical studies of the process first arose when
cracks begin developing in the tube during quenching. While the possible
causes of quench-cracking are many, most often they are associated with
the material used. It was also decided, however, to look into the tran-
sient temperatures during the quenching process and the thermal and
transformation stresses involved. The transformation stresses occur
mainly due to volume changes in the material as it transforms from one
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phase to another. As they are due to volume changes, transformation
stresses can be treated in a manner similar to the thermal stresses.
Although quench-cracking cannot be predicted from a study such as this,
a better understanding of the quenching procedure will emerge and the
relative severity of different quenching procedures would be known.

The transient temperatures and the zones of transformed material
assuming a linear relationship for the change in volume between the
martensite start and finish temperatures were treated in [1]. This
reference also considers the thermal and transformation stresses assuming
the stresses remain elastic. The present work seeks to incorporate an
elastic-plastic stress analysis into the problem. In view of the previous
results, this assumption is more realistic. The temperature and stress
problem are considered uncoupled,

Il. PROBLEM DESCRIPTION. The problem being considered is that of
the elastic-plastic stresses developed during the quenching process.
These stresses are due to both the transient temperatures that exist and
the transformation stresses.

Most of the elastic-plastic analysis work on thick-wall cylinders
concerns itself with mechanical loadings. Bland [2] does consider ther-
mal loads on a thick wall tube. Trescats yield criterion and its associ-
ated flow rule was used to obtain solutions to tubes of work-hardening
material subjected to both internal and external pressures. The temper-
atures, however, are steady state and the thermal stresses due to this
steady state temperature distribution are first calculated and assumed
elastic. External or internal pressures are then applied until some
desired plastic state is arrived at. S. C. Chu [3] used the incremental
approach for solving the problem of elastic-plastic thick-walled tubes
subject to transient thermal loadings. The von Mises yield criterion and
Prandtl-Reuss equations are used.

In the area of elastic-plastic analysis for transformation stresses,
the bulk of the work comes from a series of papers by Zwicky, Landau,
Weiner, and Huddleston [4-6]. Of those that consider the cylinder config-
uration, Weiner and Huddleston [5] used the Tresca yield criterion and the
associated flow rule to compute the residual stresses in the cylinders.
The problem for the transformation stresses was solved by assuming that
the volume expansion of the transformed material was equivalent to that
of a temperature discontinuity progressing inward from the surface. They
considered a solid cylinder of incompressible material. Landau and
Zwicky [6] solved a similar problem using the von Mises yield criterion
and its associated flow rule. They assumed a compressible material, the
yield point stress to be a function of temperature and included the com-
putation of transient thermal stresses.
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The problem considered here is that of determining the thermo-
elastic-plastic stresses and transformation stresses in a cylinder due
to quenching. The thermal program developed in [1] was coupled to a
program [7] for the computation of elastic-plastic stresses in a thick-
walled cylinder subjected to internal and external pressure. The prob-
lem is assumed to be axisymmetric.

The computer program for the temperature distribution allows for a
transient analysis with temperature dependent material properties using
an implicit finite difference scheme. The computer program for the
elastic-plastic stresses uses an incremental approach. It has been
altered to include stresses due to thermal loads. The von Mises yield
criterion is used with the associated Prandtl-Reuss flow rule. The
material is assumed compressible and is capable of work-hardening although
for this work the material was assumed to be elastic-perfectly plastic.

Ill. THERMAL EQUATIONS. The partial differential equation for the
temperature (T) in a thick-wall cylinder with inner radius, a, and outer
radius, b, is given in dimensionless form by

1 a DT DT
r r [k(T)r r] = c(T)p(T) T- (1)

where r is dimensionless radial distance, k(T), c(T), p(T) are dimension-
less thermal conductivity, specific and density, respectively, and t is
dimensionless time. The dimensionless quantities are defined as

r T-To

b T.-T

t - o t (2)
PoCo

b 2

k(T) koK(T), c(T) = coC(T), p(T) = PoR(T)

and r is the radius, T is the temperature, ko, Co, p0o are thermal conduc-
tivity, specific heat and density at reference ambient temperature To, and
Ti is initial temperature and t is time.

The boundary conditions are written as

DT _ hlT = -gl at r = a/br

and

aT3- h2 T =-g 2  at r=l
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With the boundary conditions expressed in this mLnner, different condi-
tions at the boundary can be specified. If, e.g.,g, = 0 and hl 0
and finite, then a convection type boundary condition exist on the inner
surface. If h1 was very large and g, = 0, then T = 0 is specified. If
h2 and g2 are both large and not equal, then the temperature T = 92/2
is specified in the outer surface.

IV. STRESS EQUATIONS. The use of finite difference equations to
solve the thermo-elastic-plastic stress problem requires expressing the
equilibrium equation and the equation of compatibility at each node at
which the finite difference equations are desired. The Prandtl-Reuss
flow rule is used to eliminate the incremental stresses so that what
results is a matrix for evaluating the incremental radial and tangential
strains at each node. The required equations follow, written in dimen-
sionless form. The problem is treated as plane strain.

The equation of equilibrium is written

- o (3)
ar r

where Or

Gr( -) is the dimensionless radial stressr CFO

06
ae(= = ) is the dimensionless tangential stress

and ao is the yield stress in tension, and the compatibility equation

9 + -L~ 0 (4)
5r rwhere

e( = E a-) is dimensionless tangential strain

Cr(= E -r) is dimensionless radial strain
0

and E/a o is yield strain in tension when E is Young's Modulus. The
compressibility of the material is expressed by

c = T + -v- (5)3K

where C = I (Er+c 0 ) is mean strain

I. (Ur+00+0z) is mean stress

K(= K is dimensionless bulk modulus

-0
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a(= ccTi) is dimensionless coefficient of thermal expansion

and
E z = 0 for plane strain.

Traction free boundary conditions are used

0r = 0 at r = a/b and r = 1. (6)

It was desirable to write the finite difference equations in terms

of strain alone, hence, the stresses in the equations of equilibrium had
to be expressed in terms of the strains. This was accomplished by mod-
ifying a plastic stress-strain matrix [8] which was derived by inverting
the Prandtl-Reuss equations. The inverted Prandtl-Rcuss equation is

{da} = [DP]{dc} - EadT {l} (7)(1-2 v) a 0o

T
where the stress vector is {da} = {dar_ da, do } , the strain vector
{dc} = {dcr, dEe, 0 }T and {1} represents a unit vector. The plastic
stress strain matrix [DP] is given by

[DP] = 1-v ar, 2  SYMMETRIC
1-2v S

1 V IrO'e 1-v 0(e1
2

l+N l-2v S 1-2v S
(8)

V r z I V 0 z 1-v C z

1-2v 1-2v S 1-2v S

The primed stresses are deviatoric stresses,

a.' a - a a i = r,O,z. (9)
1 i 3

At each node during a computation, the von Mises yield criterion

1 [(a -)a 2 + (a -a )2 + (a -a )2] = 1 (10)
2 rO 6z z r

is checked to see if plastic deformation has progressed to that node. If
not, the stresses remain elastic, and can still be computed using (8) by
setting the deviatoric stresses equal to zero. The matrix [DP] then
becomes the same matrix as would exist if linear elastic behavior had
been assumed. The quantity S is given by

-665-

MWi



S 22 (1 + H'
where 3

= iji 3 2 2 ,2
T ij ij 2{ar' ' z (12)

is the equivalent stress and

H d& (13)

is the slope of the equivalent stress/equivalent plastic strain curve and
is a measure of hardening. The increment in equivalent plastic strain is
given by

d dp dE (14)
p 3 ii ij

V. NUMERICAL COMPUTATIONS. The Crank-Nicolson representation for
finite differences of the pirtial differential equation governing the
temperatures in time is [1]

[(a+iAr)ki+ ,n+ ]Ti n+l +

+[-(a+eiAr)k i  ,"(a+(i-l)Ar)k i _ +-c p )(a+(i-)Ar)]T
ihn i- ,nA i,n+1i,n+h At i,n+l

+ [(a+(i-l)Ar)ki ,n+h ]T. l,n = [-(a+iAr)ki h,n+ ]Ti+,,n +

+ [(a+iAr)ki ,n+ +(a+(i-l)Ar)ki_ ,n+ -ci n+3Pin+h t--r )(a+(i-h)Ar)]Ti,n

+ [-(a+(i-l)Ar)k iin+ Til, n nIS
The equation is solved twice,

1. At n+ step, allowing k,p,c etc. to take on the values at t=n
step.

2. The new temperatures are then used to evaluate k,c,,p, at n+11
step and the set of equations re-evaluated for the temperatures at the

nil step.

The computed temperature distributions at each full time step are
saved on disk and eventually called in when required by the stress program.
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The finite difference equations are (for solid cylinder).
Compatibility:

riAe0  + (2ri-ri_l)A e (ri-ri_)A Er=i-I 1 j I)A6  (rzi)c

-r.(c -c - ) - (ri-r i-)(.e C ) (16)' 1 i r

Equilibrium:

-riA r. - (ri-r i )AcT. + (2ri-ri l)Acr 

-ri(ar.-ar. )- (ri-ri-1)(Cr.-'J6) (17)
1 i-i 1. 1

Substituting the Prandtl-Reuss equations into that of equilibrium

-riD(r,O)Ac. -r.D(r,r)Ac r +[-(r i-r i-)D(e,')+(2r i-r i-l)D(r'O)]A%.
i-i i-I i -ii1

+ [-(ri-ri- )D(O,r)+(2ri-r. 1)D(r,r)]Ac
1 - - r.

1

Ec
[rio -o +( - 1) -r) +r .. - AT.-ATi_! (18)

1 r r i i-i (.@. i 1-2 1i 1 1 1

at i = 1 (zero radius for solid cylinder)

-AE + AErl e1 rI  (19)

at i = n (or outside boundary) a = 0 orr
EaATnD(r,0)A 0 + D(rr)AE r 1-2 (20)

n n

For the hollow cylinder, a boundary condition similar to i n can be
written for i = 1.

The solution procedure for the trans.ient temperature problem is as
follows. The temperature problem is solved and the te,,cerature distri-
bitions at their computation times are stored on disk. These distri-
butions are called into the thermo-clastic-plastic stress program one
at a time. The corresponding thermal stresses are calculated and each
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node checked to see if the yield criterion is satisfied. If not, the
problem is still assumed to be elastic, a new temperature distribution
is called in and new stress increments calculated. The stresses are
updated and the yield criterion checked again. When the stresses at a
point are found to satisfy the yield criterion, the node is identified
and the stress increments at that node from the next set of temperatures
are computed using the Prandtl-Reuss equation or [DPI matrix identified
earlier. This is continued with new sets of temperatures called in and
with the tracking of the elastic-plastic boundary(s) with time. The
resultant stresses that exist after a steady-state or uniform temper-
ature distribution is reached are the residual stresses.

The solution procedure for the transformation stresses is similar and
will be described in the next section.

VI. RESULTS AND DISCUSSION. Several runs were made for the stresses
due to the transient temperatures and for the transformation in both solid
and hollow cylinders. For the results presented here, the following data
was used:

E = 30x10 6 psi, (0  30xl0' psi

a = 7.75x10- 6/0F, Ti - 1250 0F - a = aT = .0097

V = .3

h2 = 12.2, hI = 12.2 and 6.1.

The first results shown are those for the transformation stresses.
These stresses can be conputed using the thermal stress formulation if
one replaces aT or the thermal expansion by the linear expansion of the
transformation. If the material expansion due to the transformation is
isotropic, this linear change is 1/3 the volume expansion. As an example,
the volume expansion in going from the austenite to the martensite struc-
ture for steel is about 3%-4%. In the quenching of a solid cylinder,
the transformation begins on the outer surface and progresses inward to
the center. Figure 1 shows the residual stresses in a solid cylinder
due to a transformation occurring in the material. The insert shows the
temperature function as it progresses inward. It is of unit height in
the transformed material and zero in the untransformed material. The
transformation is assumed to be occurring over eight nodes or 8% of the
cylinder (indicated by N in Figure), and a linear relation is assumed
over this length. Initially, o is compressive near the outside radius
when the transformation just begins as the material wants to expand but
is prevented from doing so by the surrounding untransformed material.
As the transformation progresses, however, a0 slowly changes sign and
becomes tensile. The computer run was stopped just before the trans-
formation was complete, and that is the reason for the behavior of the
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stresses near the bore. The transfo-mation at r = 0 had just started
when the run was stopped.

Figure 2 shows similar results for the hollow cylinder. The assump-
tion is made that the transformation progressed evenly from the inside
and outside surfaces. Tangential stresses on the outside surface again
were initially compressive and slowly changed to tensile stresses while
those in the inside radius always remained compressive.

Figures 3 and 4 show the iesidual stresses that exist due to the
transient temperatures from the quenching process. Figure 3 represents
the results for the solid cylinder. The large axial stress due to the
plane strain assumption is easily seen. As the quenching begins, the
outside surface cools and wants to contract. It is prevented from doing
so by the surrounding material and therefore ae is initially a tensile
stress. The elastic-plastic boundary begins on the outside surface of
the cylinder and moves towards the center.

Figure 4 shows similar results for the hollow cylinder. The figure
shows the residual stresses when equal convection type boundary condi-
tions are used on both the inside and outside diameters. These are shown
by the solid lines. A comparison is made with the same problem when the
convection boundary condition on the inside diameter is decreased by 50%.
A dotted line compares the differences in the tangential stress, ae, and
a substantial reduction is noted in the residual stress.

The usefulness of these results is thus shown. For the quenching
problem, the maximum quench time for the desired metallurgical phase
structure to be formed is of interest because it implies that the mater-
ial will be subjected to slower transient temperatures and smaller
residual stresses. Thus, a better understanding of the transient temper-
atures in the quench tube, the resulting residual stresses, and the effect
of the quenching process is gained.
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A NIJMI!RICAL COMPARISON BI-WEIEN TWO UNCONSTRAINED
VAR I AT IONAL FORMU IAT IONS

J. J. Wu and T. 1. Simkins
U. S. Army Armament Research and Developmcnt Command

Benet Weapons Laboratory, 1,CSL
Watervliet Arsenal, Watervliet, NY 12189

ABSTRACT. In an effort to relieve the often cumbersome burden of
meeting the requirements on the end conditions and to unify the solution
formulation for boundary- and initial-value problems, unconstrained
variational statements have been introduced in conjunction with some
approximate methods. In the case of a boundary value problem, it is
shown in this paper that two different variational statements can be
established: one is arrived at by the use of the Lagrange multipliers,
the other by energy considerations. The numerical convergence of the
solutions associated with finite element schemes using one of these two
different variational statements is compared with that of the other. In
the case of an initial value problem, both formulations can again be
established when the adjoint field variable and the adjoint variational
statement are introduced. The numerical data presented here indicate
that while both methcds generate excellent convergent results for the
boundary value problem, the method of stiff springs yields results which
show much better convergence for the initial value problem than those
achieved by Lagrange multipliers.

I. INTRODUCTION. In conjunction with variational methods of mathe-
matical physics, it is often burdensome to select trial functions which
are required to satisfy some or all of the end conditions (see, for
example, reference [1]). Efforts thus have been made to relieve such
requirements on these trial functions. Courant and Hilbert have pointed
out that in conjunction with boundary value problems, this can always be
done by adding extra boundary terms in the variational statement [2].
Such a concept has been applied successfully by Wu in obtaining solutions
to nonconservative stability problems [3). Wu has further extended the
application to the solutions of initial value problems [4]. Simkins
also developed unconstrained variational statements for initial and
boundary value problems [S]. The approaches used by Wu and Simkins are
different in that while Wu, after Courant :and Hlilbert, employed the
concept of a very large constant (very stiff spring constant), Simkins
used the method of Lagrange multipliers. For any given problem, the
variational statements arrived at by the two approaches are different
in boundary terms. The purpose of this paper is to compare the numer-
ical convergence of them in terms of some simple, but specific, examples.
Both boundary and initial value problems are considered.
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II. UNCONSTRAINED VARIATIONAL STATEMENTS FOR A BOINDARY VALUE
PROBLEM. Let us first consider the transverse vibrations of an Eulcr-
Bernoulli beam tinder axial load. The differential equation in nondimen-
sionalized form can be written as (1]:

y,11 + Qy,, + X2y = 0 (2-1)

where y = y(x) is the transverse'displacement of the beam, as a function
of the variable x along the column's length (0<x<l). The axial force is
denoted by Q; A is the eigenvalue and a prime ('Y denotes a differentiation
with respect to x. The problem is not defined completely, of course,
without appropriate boundary conditions. Consider the following given
conditions:

y(O) = y'(O) = 0 (2-2a,2b)

y"(1) =y' (I) + Qy'(1) = 0 (2-2c,2d)

Eqs. (2-1) and (2-2) define the familiar buckling problem of an Euler
column. It can be solved by methods of approximation in conjunction with
a variational statement.

6I0 = 0 (2-3a)

where
I

10 (y) = 2 fO [(y) 2 _ Q(y,)2 + X2y2 dx (2-3b)

0

Through integrations-by-parts, Eqs. (2-3) leads directly the following

610 = 0I0

- f (y1" + Qy- + X2 y)6ydx
0

+ y"(1)y' (1) - y"CO)-y'(0)

- Iy"' (1) + Qy'(l)]6y(1) + [y"' (0) + Qy'(O)]6y(O) (2-4)

Eq. (2-4) indicates that 610 = 0 is equivalent to the differential equa-
tion (2-1) and the last two of the b.c. Eq. (2-2c,2d) provided that the
variations 6y(l) and 6r(l) are chosen arbitrarily (thus causing their
coefficients to vanish) and that Sy(O) and 6y'(O) vanish identically.
Thus, 610 = 0 can be used as a basis of approximate solution if trial
functions are chosen which identically satisfy (2-2a) and (2-2b). Since
(2-2a,2b) must be "imposed" they are called "imposed boundary conditions".
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The choice of trial functions is otherwise arbitrary and convergence,
when achieved, will tend 'naturally' toward a solution satisfying (2-2c)
and (2-2d) which are called the 'natural boundary conditions' of the

problem. The imposed conditions on the trial functions are often burden-
some in the process of obtaining approximate solutions [1]. In this

paper, two different methods are compared which remove these constraints

on the trial functions.

The first approach is an extension of the method of the Lagrange

multipliers in classical mechanics. Suppose one desires to unconstrain

the boundary condition (2-2a) y(O) = 0. The modified variational state-

ment shall take the form of

6 11 = 0 (2-Sa)

where

I 1 0 + axy(O) (2-5b)

and 1 in (2-5b) is given by (2-3b). Eqs. (2-5) then become

611 0 = 61 + a6y(O) = y(O)6a (2-6a)

1

= (y'"' + Qy" + X2 y)6ydx
0

+ y"(l)6y, (1) - y"()y' (0) + y(0)6a

- [y", (1) + Qy(1)]c6y(l) + [y", (0) + Qy,(0) + a] 6y(O) (2-6b)

It is clear from Eq. (2-6b) that if one defines

a =- y"' (0) + Qy' (0)) (2-7a)

thus

S - [6y" (0) + Q6y'(0)) (2-7b)

equation (2-6b) becomes
1

611 = 0 = f (y'"' + Qy" + X2 y)6ydx
0

+ y,,(l)Sy(l) - (y"(o) + Qy(0)]6y'(O) - y()6y"', (0)

- [y"' (1) + Qy' (l)]y(1) (2-8)
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where k1 and k2 are the nondimensionalized spring constants for deflection
and rotation respectively at x = 0. Now since

61 = 0
1

J (y"' + qy,, + 2 y)6ydx
0

+ y"(1)6y'(1) - [y"(O) - k 2 y'(0)]6y'(0)

- [y"' (1) + Qy'(1)16y(1) + [y'" (0) + Qy1(0) + kly(0)]6y(0) (2-11)

the natural boundary conditions are

y"' (0) + O y'(0) + kly(0) = 0 , y"(0) - k2y'(0) = 0
(2-12a, 12b)

y"(1) = 0 , y"' (1) + y' (I) = 0 (2-12c,12d)

It is clear that Eqs. (2-12) reduce to (2-2) if ki and k2 become infinitely
large. Hence, the variational statement (2-10) can serve as a basis of
an approximate solution formulation for the problem defined by Eqs. (2-1)
and (2-2) if kj and k2 are taken to be very large compared with unity in
actual computations.

III. UNCONSTRAINED VARIATIONAL STATEMENTS FOR AN INITIAL VALUE
PROBLEM. In the case of initial value problems, similar procedures can
be used to free the initial conditions imposed on the trial functions.
Examples have been given in two previous papers [4,5]. Since initial
value problems are nonself adjoint by nature, adjoint field variables
must be introduced to form variational statements which provide the basis
for approximate solutions. In this section Lagrange multiplier formu-
lations will be compared with those using the method of infinitely stiff
springs - each method being used to relax the requirement that trial
functions satisfy identically the imposed conditions arising from an
initial value problem. Forced motions of a spring-mass system is used
for illustration. The differential equation for such a system can be
written as

+ 2 y = f(t) (3-1)

where y Y(t) is a function of the time t and a dot (') denotes differ-
entiation with respect to t. The constant w2 = k/m where k is the spring
constant and m, the mass. The initial conditions are:

y(0) = a , k(0) = b (3-2a,2b)
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No generality is lost if, in establishing the corresponding variat ijov l

statements, one considers only a homogeneous system. Hence we conm idcr

the differential equation:

y + 2y = 0-

and initial condition

y(O) = 0 , kO) = 0 (3-'ab)

The fact that the system of Eqs. (3-1') and (3-2') leads to a trivial

solution only is not of concern here.

Let z = z(t) be the adjoint field variable. First, the variational

statement obtained by the use of Lagrange multipliers is verified to be:

6 o  0 (3-3a)

where
1 1

10 = - f idt + w2f yzdt (3-3b)
0 0

+ (l)z(l) - y(0)1(0)

Eqs. (3-3) lead to

610 0

f f (y + w2y)6zdt + 5(0)6z(O) - y(O) 6 -'(O)

0
+ f (z + w2 z)6ydt - z(l)6y(l) + z(1)6'(1) (3-4)

0

Eq. (3-4) states that 6Io = 0 is equivalent to the problem of Eqs. (3-1')

and (3-2') and the adjoint problem defined by

z + W2 z = (3-S)

and

z(1) = 0 , i(l) - 0 (.-(ia,6b)

In as much as the variations of the field variable 6y, 6z, etc. are quite

arbitrary and 6y is quite independent of 6z, one can take 6y = 0. ,%.(O =

0 and 6k(l) = 0. Hence the association of the problem of (3-1') and

(3-2') with the variational statement Eqs. (3-3) is established.
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Now for the inhomogeneous system of Eqs. (3-1) and (3-2), one may

similarly verify the corresponding variations statement:

6 1 = 0 (3-7a)

where
1 1

11 (y,z) - 5idt + f [u 2y - f(t)lzdt
0 0

+ y(l)z(1) - [y(O) - a]j(O) - bz(O) (3-7b)

On the other hand, when the "infinitely stiff spring" approach is used
to treat the homogeneous case, the variational statement takes the
following form [4]:

61 = 0 (3-8a)

where
1 1

I = - fkidt + w2 f yzdt + ky(O)z(l) (3-8b)
0 0

Eqs. (3-8) result in

61=0
1f (y + w2y)6zdt + k(0)6z(0) + [ky(0) - k(l)]6z(l)

0
1

+ f (z + w2 z)6ydt - i(l)6y(l) + [kz(l) + -'(0)]6y(0) (3-9)
0

The differential equations for the problem and for the adjoint problem
are unchanged. The end condition for the original and the adjoint prob-
lem are

(O) = 0 , ky(0) - k(l) = 0 (3-10a,10b)

and

_(l) = 0 , kz(l) + -1(0) = 0 (3.-la,llb)

respectively, Eqs. (3-10) and (3-11) reduce to (3-2') and (3-6) respec-

tively as k becomes infinitely large.
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From EIqs. (3-8), extrsion to a variational statement is ca Iv rmlae

for the inhomogeneous case of Eqs. (3-1) and (3-2):

6I1  = 0 (3-12a)

where
1 1

1= - I ydt [u 2 y - f(t)]zdt
0 0

+ ky(O)z(l) - kaz(1) - bz(O) (3-12b)

IV. NUMERICAL COMPARISONS. In this section, the two methods for

the unconstraining of the coordinate (trial) functions described in the
previous section will be compared numerically. The approximate soli-

tions are formulated through the finite element discretizations.

IV.A. Boundary Value Problem. The example given in Section II
shall be used. The set of Eqs. (2-1) and (2-2) constitute an eigen-
value problem. Using the method of Lagrange multipliers, the associated

variational statement is given in Eqs. (2-9) which can also be written
as

1
61 = 0 = f (y"6y" - Qy6y' + X2y6y)dx

0

- y(0)6y'" (0) - y"' (0) 6 y(O)

+ y'(0)6y"(O) + y"(0)6y' (O) (4-1)

In applying the standard finite element discretization the beam is

divided into K equal elements. Denoting the local coordinate by 4,
one has, for the m-th element:

- (m) = Kx - m + 1 (.1-2a)

dC = Kdx (.1-2b)

Thus, in terms of local variables, Eq. (4-1) becomes

KM (M - (m1), (ymm) j,

61 0 = f I [K3y( ) 6Y(m) " QKy' 6 '6 W(m) 6)(m d
m=l 0 K

SK3y (1) (0)6y (  (0) - K3)( 1 ) (O)6v()
K3 M(1'(O)6yMl"(O) + 1(3yl"(O)6y(1'().-3

(0) (.1-3
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Now, let

y(m) a T(r) y(m) (4-4)

where

a() al(C) 1 - 3 2 + 2& ,

*2 (&)  _2 2 + C3 k
a3 () 3C2 - 2C3

a4( -C2 + E 3 (4-5)

y(m) = (m)

Y 2 Nm)

y (m)

Y 4 (m) (4-6)

and a superscript T denotes the transpose of a matrix. Eq. (4-3) now
can be written as

K T 1
61 = 0 = 1 6 Y(m) [K 3 f a"( )a"T()d& - QKf

m=1 0 0
X2 T

+ 2 f a( )aT ()d]Y(m)
K 0 " ~

SK36y(1)T [a"' (O)aT(0) + a(O)a"T (0) . a"(0)a T(0) - a(0)a,,T(0)]y(1)

(4-7a)
Or

K 6Y (m ) T  3C 2 (M
6= 0 = ym)[K3C - QKB + A]Y(m)

m=1 -

-K6y() 1+ - ( + B2T)]y(1) (4-7b)

where
1 1 1

A =f aaTdC, B = a'a TdC, C f I asa"Td& (4-8a)
0 " 0 -
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B1 = a"' (O)a(0) = 12 [1 0 0 01 -12 0 0 0

6 6 00 0

(4- sb)

-12 -12 0 0 0

_6_ _6000

B = a"(0)a'(0) = -6 [01 0 0]= 0 -6 0 0

-2 1
-4 0 -4 0 0

(4-8c)
6 0  6 00

L-2 __0L -2 00_

Now, Eq. (4-7) can be assembled into a global matrix equation

61 - 6¥T[K + X2M]Y = 0 (4-9)

where

y T:[Y(1) Y2(1) Y3(1) Y4(1) Y3(2) Y4(2) ..... Y3(K) Y4(K) (4-10)
- 1 2 3 4 3 4 3 4

The details of obtaining the global matrices K and M have been given

elsewhere [1] and will not be repeated here.

Since 6Y in (4-9) is unconstrained, the equation reduces to

(K + X2M)Y = 0 (4-11)

which will be solved for the eigenvalues A2.

%hen the method of infinitely stiff springs is used, the variational
statement is given by Eqs. (2-10), which can also be written as

1
61 = 0 : f (y"6y" - Qy'6y' + X2 y6v)dx

0

+ kly(0)6y(0) + k2Y'(O)
6y'(O) (4-12a)

K 1 (m) t .2
= I f (y 6 y(m) QKy) 'y(m)' _ y 6y(m)d
m=1 0 K

* ky1) (0)6y(1 ) (0) + k2 K2y(') (0)6y ( 1') (0) (4-1-b)
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Or,
61 = 0 = 6y(")T[K3 C - QKB + -2 A]Y(m

m=1 K -K

+ 6y( 1)T[kB3 + k2 K2B 4 ]Y(l)
- (4-13)

where TB-- a(o)ar~)- Iooo.-3
0000

(4-14a)
0000

0000

B4 = a'(0)aIT(0) = 0 0 0 0

0100

(4-14b)

As before, Eq. (4-13) can be assembled into a global equation

61 = 0 = 6yT(K + X2M)y (4-15)

so that the eigenvalue X2 can be solved from

(K + X2 f)Y = 0 (4-16)

Numerical data for the vibration frequencies of a cantilevered

column are given in Tables I and II for both the method of Lagrange

multipliers and the method of infinitely stiff springs. As shon in

these Tables, both methods display excellent convergence.

In the case of the stiff spring method, Tables I and II also

indicate that the greater values of k1 and k, may not give more accurate

results, although all the results are good when k1 and k2 are sufficiently

large. This point is further demonstrated by the computations sholl

in Table III. Since greater values of k1 and k2 mean that the prescribed

end conditions are more accurately satisfied, Table III suggests that

forcing the solution to greater accuracy at one point may cause a decline

in overall acceptability of the results as evidenced by the declining

accuracy of the eigenvalue. This same conclusion was first presented

in [1].
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IV. B. An Init ia Value P rob em. For our numcrical comparisons in
the casc of an initial value problerm, we shall consider the one defined
by:

D.E. + ky = foCOwft, O<t<T (4-17)

I.e.: y(O) = a , y(0) = b (4-18a,18b)

The specific values of the constants ni, k, fo, wf, a, b and T will be
given later. The upper limit of the time interval T can take any
positive value other than infinity. Before one applies the variational
formulation given in Section III, it will be convenient to normalize the
time variable t with respect to T. Thus let

T= t/T , t = TT, dt = TdT (4-19)

y(t) =Y(T) (4-20)
dt T dT dt2  T2 dT2

Also define
- f T2

W WT f
m

_ _ -(4-21)

(f = WfT , a = a, b = bT

With these new parameters, Eqs. (4-17) and (4-18) become

D.E. + 2 y f cos(Zf ) , 0<1<1 (4-22)

I.C. y(O) = a , y(O) = b (4-23a,23b)

Now we are ready to apply the formulations given in Section III. We
shall first consider the solution formulation by the method of Lagrange
multipliers. Comparing Eqs. (4-22) and (4-23) with (3-1) and (3-2),
one observes that the variational statement follows that of Eqs. (3-7).
Or,

61 = 0 (4-24a)

where 1 . . 1
I=-f Y ZdT +f [w2 y-COS(WfT)]z dT

0 0

* y(l)z(l) - y(O)z(O) + a z(O) - b z (0) (4-24b)
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Since 6y and 6z are quite independent of each other, one can set 6y
0 in Eqs. (4-24) and obtain

1,_. 1 1

(61) 6y = - J y6zdT + f W2y6ZdT - f f cos(WfT)dzdT
0 0 0

y(1)6z(1) - y(O) 6z(O) + a6z(0) - b6z(0) = 0 (4-25)

The same process of finite element discretization used for the boundary
value problem ii, the previous subsection can be employed here. The same
shape functions and generalized coordinates are also used. In terms of .
the element variables, C, defined before, except now that

=kT - m + 1 (4-26)

etc., Eq. (4-25) becomes:

(61)0 = K 6z(m)T [-Ku a'a'Tdt + f 1 aaT d ]Y) m

6Y-O m=l " 0" K 0 -

+ 6 z(KTKa(1 )a, T(1)y ( K) _.6z(l)TKa
, (O)aT(O)Y(l)

K T 1 f
I f f cos[ -- (E m - l)]a d

m=l K 0

, (1)TaKa'(0) - 6z (ITb a(O) (4-27)

K (2T w2  (K)T (j)T (1)
S6z mT[-KB + -A]y(m) + 6z KB V(K) - 6z KB Y

m=l " K . .. . ~ ..6

K T f T- 1 6 z(m) + 6z(1' [aka'(0) - ba(0)] =0 (4-28)

m=1 W ..

where A, B have been defined in Eqs. (4-8a) and

B5 = a(l)aT(l = [0 0 01] 0 0 0 (4-29a)

0 0000

1 0 00 1
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B6= a, (O )aT (o) [1 00] 0 0 ] = -0 0 0 0- 42b6 ()='oo(4-29b)

1 O o 00

/0 _0 000

1 -

F = f cos[ -f ( + m - 1)a d& (4-29c)
0 K

In terms of global generalized coordinates Y and Z defined by

y T= [Y(1) Y2(1) y3(1) Y4(1) Y3(2) y 4(2)......y3 ( K ) y4 ( K)  (4-30a)

and

ZT ( 2 (1) Z3(1) (1) (2) Z4(2) (K) Z (K)[ 1 72 3 4 Z3 4 ... 3 z4() (40

Eq. (4-28) can be assembled as before into the matrix equation

6zT[KY - F] = 0 (4-31)

Or, since 6Z is not constrained in any way,

KY = F (4-32)

which can be solved for Y.

When the method of infinitely stiff springs is used, the variational

statement must be modified according to Eqs. (3-12). Thus, the finite
element discretization begins with

(61) 0y=O

1 1
y-idJ + f [-2j, - t cos( fT))i dr

0 0

+ ky(O)z(l) - kaz(l) - bz(O) (4-33)
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Hence, K (m)T[_ 1 T ° TIm

1 6Z [-Kf ataTd + W- f aaTd]Y(m)
m=l "0 - K 0 "

+ k6Z(K)Ta(1)aT (O)Y (1)

K 6Z ( m) T- 1 C f
- Z- f cos[- ( + m- 1)]a dE

m=l - K0 K

k6Z(K)T aa(l) 6Z(1)T ba(0) (4-34)

Or, K6z(m)T[-KB + E' A]Y(m) + 6 z(K)TkB7Y(l)

m=l - - K- ... .

K1-
-- 6z") . F() _ 6Z(K)T kaa(l) - 6Z(lT ba(O) (4-35)

where A, B, F(m) have all been defined before and

B7 = a(l)aT(O) = -0- [ 0 0 0] = 0 0 0 (4-36)

0 0 0 00

1 100 0

-0 00 0 0

Now, as with Eq. (4-28), here Eq. (4-35) can be assembled in a global

equation in the form of Eqs. (4-31) and (4-32) and be solved.

The specific problem considered is as follows:

my + k = fo cos(wft) , 0<t<T

with
y(O) = yo and j'(0) yo

The numerical values of the paramcters are:

m = 1.0, k = 1.0, fo = 1.0, ,f = 0.5

YO 1.0, )'1 = 1.0
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The plot for the forcing fiuiiCtion ' o cos(wft) and the exact solution
y(t) is shown in Figure 1. The nmerical solutions of the problem
using both the method of Lagrange multipliers and the method of stiff
springs are given in Tables IV through IX.

Tables IV through VI show the stiff spring method generates
excellent convergent results for various lcngths of intervals of
solution.

The results using the method of Lagrange multipliers are shown
in Tables VII through IX. Table VII shows that for moderately long
intervals, the convergence at the initial point is non-existent
although it improves remarkably away from the initial point. This
data may lead one to doubt whether the method of Lagrange multipliers
works at all in treating i.v. problems. However, when the length of
the interval of solution is reduced, as shown in Tables V1II and IX, it
is clear that the results do converge. Hence, both methods generate
convergent results. The length of interval used in the Lagrange
multipliers approach is so small compared with the stiff spring method
for comparable convergence that the practical value of the former is
doubtful in treating initial value problems when finite element
discretization is employed. Simkins [4] has shown, however, that when
global approximating functions are employed, (consisting of higher
ordered polynomials), very good results can be achieved over an
acceptable interval of solution.

V. CONCLUSIONS. From the numerical data presented in this paper,
the following conclusions are suggested:

1. Both the method of Lagrange multipliers and the method of
stiff springs generate convergent results.

2. In the case of boundary value problems, both methods give excellent
results and equally fast convergence. The method of stiff springs
appears to be easier to use and more general in a practical sense.

3. For initial problems discretized by finite elements (piecewise
continuous third order polynomials), convergence of the Lagrange multi-
plier method, as compared to the method of stiff springs, is so infer-
ior as to be of dubious practical value. (This statement does not apply,
however, where a global discretization is employed using higher ordered
(e.g. 8th order [4]) polynomials continuous over the entire domain of
integration.)
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FIGURE 1. Plots for the forcing function f 0 cos(uft) and the exact

solution y(t) for a simple initial value problem.
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UNC6NSTRAINED VARIATIONAL STA'EMENTS FOR INITIAL
AND BOUNDARY-VALUE PROBLEMS

A. E. Simkins
U.S. Army Armament Research and Development Command

Benet Weapons Laboratory
Watervliet Arsenal, Watervliet, NY 12189

ABSTRACT. A procedure is developed for generating variational
statements suitable for obtaining approximate solutions to boundary-
initial value problems. The essence of the procedure is to introduce
all boundary and initial conditions into the variational statement as
natural boundary conditions. This is accomplished through the use of
Lagrange multipliers, in which all initial condition terms as well as
boundary terms are determined analytically. The result is a variational
statement in which comipletely unconstrained trial functions may be
assumed as a basis for an approximate solution. Several applications
are given, including the response of a beam subject to a moving con-
centrated mass loading.

I. INTRODUCTION. Theorems establishing the correspondence between
certain boundary value problems and the calculus of variations appear
in detail in the treatise of Collatz [1]1. More recently, Rund [21 has
produced more general theorems through the use of the transversality
conditions from which the theorems of Collatz emerge as special cases.
Neither of these works, however, attempts to establish variational state-
ments for the solution of initial value problems, which is the subject
of the work herein.

Recent work by Bailey [3,4] has shown that Hamilton's law of vary-
ing action is capable of yielding approximate solutions to initial and
boundary-initial value problems. The variational form used by Bailey
allows the function and its derivative to vary at the upper limit of
integration of the time interval. At the lower limit, these quantities
are constrained to satisfy specified initial conditions. It appears
that a more general method would free the variations at the lower limit
as well, thus broadening the class of admissible trial functions.
Although much has been written [5] on the subject of removal of con-
straints on the boundary variations, the applications usually deal with
elliptic rather than hyperbolic systems, where it is customary to intro-
duce the constraints of the problem as natural boundary conditions. The
constraints themselves thus become subject to approximation through the
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variational process. Convergence, when achieved, tends toward a solu-
tion satisfying these constraint conditions. When all of the constraints
of the problem are introduced in this manner, the result is a completely
unconstrained variational statement, whereby the trial functions need
not identically satisfy any boundary conditions. As the use of Lagrange
multipliers in freeing boundary variations of constraints is by now
classical, this work is fundamentally concerned with extending the
method to remove constraining time conditions.

The Lagrange multiplier procedure adds each constraint as a zero
times a Lagrange multiplier to the previously unconstrained variational
statement. In this way, each constraint is made to appear as a natural
boundary condition and, in some cases where a functional exists (i.e.,
variational "principles"), it may be modified to include these terms.
The multipliers can usually be identified in terms of values of the
function and its derivatives on the bounding surface of the domain of
imtegration. The act of freeing the boundary variations will not result
in the loss of a variational "principle" provided the constraint is
holonomic, i.e., a functional will still exist though modified by addi-
tive products of the Lagrange multipliers times the individual constraint
relations. On the other hand, should any of the constraints be non-
holonomic, the existence of a functional is denied and one has in its
place a less elegant variational "statement" which may nevertheless
provide a basis for an approximate solution to the problem at hand.

In spite of the apparent generality of the Lagrange multiplier
method, its application to Hamilton's principle (a constrained varia-
tional principle) for the solution of initial value problems is not
obvious. Indeed, Bailey found it fruitful to employ Hamilton's law
of varyimg action in which no functional exists. Once the quest of a
functional is abandoned, however, unconstrained variational formula-
tions for initial value problems are immediately possible, as was
first shown by Tierstem [6]. Since the purpose of Tiersten's work at
the time did not involve explicit ,)lutions in the time domain, the
success of his method for achieving solutions to initial value prob-
lems was never tested. Further, Tiersten's procedure requires a
special introduction of one of the initial conditions into the varia-
tional statement, making incomplete use of the Lagrange multiplier
method in the time domain. Solutions to the free oscillator, the two-
dimensional wave equation, and the motion of a beam to a moving con-
centrated mass are offered as evidence of success of the method.

The variational form presented herein does not produce a functional.
Gurtin [7] and later Wu [8], however, have successfully formulated ini-
tial and boundary-initial value problems using unconstrained varia-
tional principles in which a functional is indeed produced. Wuts treat-
ment requires introducing the adjoint variable and replacing the given
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boundary and initial conditions with a set of artificial conditions
containing a parameter that eventually is allowed to become very large
numerically. Using finite element approximations, Wu was able t')
achieve excellent agreement with the exact solutions of several partial
differential equations in one and two dimensions. Gurtin's procedure,
on the other hand, combines the initial conditions and field equation-
into a single integro-differential equation which is then regurgitated
as the Euler-Lagrange equation when the variation of a constructed
functional is made to vanish.

II. VARIATIONAL STATEMiINTS AND, LAGRANGE MULTIPLIERS. UnIcs the
variational quantities appearing in a variational statement or principle
are completely arbitrary, the formulation is said to be 'constrained'.
The principle of virtual work in its conventional form is one example
of a constrained variational principle; i.e.,

0 = 6f U(c)dV - f Ki6uidV - f Fi6uidS (I)
V V Sf

where U(c) is the potential energy density of an elastic volume, V.
The Ki are body forces per unit volume and the u i are the unknown
displacement functions. A bar denotes prescribed surface quantities,
and

Fk = n k Duj, nZk (2)

where nZ is the outward directed normal to any surface. CTk represents
the stress tensor.

Implicit in Eq. (1) is the constraint:

Ui = ui on Su (3)

i.e., the displacement functions must be those prescribed on the bound-
ary surface Su. Further, Su and Sf do not overlap and together comprise
the complete boundary of the volume, V.

If Eq. (1) is used as a basis for approximating a solution to a
problem in elastostatics - e.g., via the Rayleigh-Ritz method - the
shape functions employed in the approximation must each identically
satisfy the constraint equation (3) a priori. This requiremett may be
removed by using Lagrange multipliers to introduce the constraint
explicitly in Eq. (1) which then becomes:
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0 = 6{f U(c)dV + f Ai(ui-ui)dS} - f Ki6uidV - f Fi6uidS (4a)
V S u V Sf

= 6 f U(c)dV + f {6X.(u.-ui) + Xi6ui}dS - f Ki6uidV - f Fi6uidS
V S u  1 1 1 V SF

For a Hookean material:

6f U(c)dV = f a ij 6ijdV
V V

= f (a.ij6ui),jdV - f i. 6.uidV
V V 1J

- f Fi6uidS + f Fi6uidS - f ai. 6uidV
Sf Su  V

Thus

f Fi6uidS - f (a ij,j+Ki)6uidV + f [ki6u.+6;.(u.-u.)]dS
Su  V Suu

+ F (i- i)6uidS = 0 (4b)
s f

Now the 6ui in Eq. (1) or Eq. (4b) are not all arbitrary because of the
constraints in Eq. (3). But if the Lagrange multipliers, Xi, are
defined as -Fi on Su, the coefficients of all 

6ui quantities on Su
vanish, and hence the 6ui may be viewed as arbitrary. This is the
essence of the Lagrange multiplier method. It is important to note
that the constraints involved in this exercise are holonomic and the
surfaces Su and Sf do not overlap.

Thus, substituting Xi E -Fi on Su, Eq. (4a) becomes an uncon-
strained principle of virtual work:

6{f U(E)dV - f Fi(ui-Zi)dS - f KiuidV - f Pi udS} = 0 (4c)
V Su  V Sf

If the Rayleigh-Ritz method is used with Eq. (4c), the shape functions
assumed no longer need satisfy identically the constraint relations in
Eq. (3).
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Another example of a constrained variational principle is Hamilton's

Principle [61:

6ft l dt{f (T-U)dV + f FkUkdS} = 0 (5)
t V Sf

In analogy with the previous treatment of the virtual work principle one

notes that instead of simply

f U(c)dV

V

we have t
f f (m-U)dVdt

to V

where T is the kinetic energy density. Thus, in addition to the term,

Fk = n,D

one can expect a similar term from T, i.e.,

P= + DT2 +

auk

where p is the mass density and the ± denotes unit normals to the 'time'

surfaces t = to and t = tI.

The constraint equations are

ui = ui  on Su (6)

and 6ui 
= 0 at t = t0

The constraint at to can be satisfied by specifying ui at to but this

cannot be done for the later time t1 in the ordinary initial value

problem. Thus, Hamilton's Principle contains at least one non-holo-
nomic constraint.

Further, one notes that both momentum and displacement are

prescribed on the same surface to . Thus the quantity

Pk6uk]to , unlike Fk Uk]sf

does not appear in Hamilton's Principle and analogous definitions for

the Xi are therefore not available. While the pressure of non-holo-

nomic constraints can be handled by a more general Lagrange multiplier

procedure [9], the overlapping of surfaces on which displacement and
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momentum are specified proves insurmountable in applying the Lagrange
multiplier technique. One concludes therefore, that straightforward
use of the Lagrange multiplier technique to completely unconstrain
Hamilton's Principle in the time domain is not possible.

I1. INITIAL VALUE PROBLEMS AND ADJOINT VARIATIONAL PRINCIPLES.
The work of the previous section demonstrates that there is no diffi-
culty in using the Lagrange multiplier method in the space domain
where the governing equations are elliptic, but only in the time domain
where hyperbolic systems are encountered. In this section it is shown
that hyperbolic systems can also be treated by the multiplier method
provided consideration is given not only to the physical system but
also its adjoint. This is most easily Shown by example.

Consider the following initial value problem:

U" + U1 + u = 0 ; O<x<l

u(O) u'(O) 0 (7)

The adjoint to the system Eq. (7) is:

V"- V + v = 0

v(l) v'(1) = 0 (8)

An adjoint variational principle may be found by multiplying Eq. (7)
by the adjoint variable v and integrating over the domain. Thus:

1 1 1
f v(u"+u'+u)dx - [vu'] = I f (uv+u'v-u'v')dx (9)
0 0 0

If the variation of I is made to vanish:

1 1 1
61 = 0 = [vdu-u'Sv-v'6u] + f (u"+ul+u)Svdx + f (v"-v'+v)6udx (lOa)

0 0 0

Now if v(l) and u(O) are specified a priori,

i.e., v(l) = 0
(1Ob)

u(O) = 0
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then,
1 1

61 = 0 = u'(O)Sv(O) - v'(1)6u(l) + f L(u)6vdx + f L*(v)6udx (10c)
0 0

Since only 6v(l) and 6u(O) a~e constrained to vanish in Eq. (lOc), the
rest of the variations are independent and arbitrary. Thus in addition
to Eq. (lOb) we have,

L(u) U" + u' + u = 0

L*(v) v" - v' + v = 0 (1Od)

u'(0) = 0

v'(l) = 0

Equations (lOb) and (lOd) comprise the entire system of equations for
the adjoint and physical systems. As it stands, Eq. (lOc) is a con-
strained adjoint variational principle since the constraints (Eq. (lOb))
are imposed a priori. The fact that Eq. (10c) does not, by itself,
yield all of the initial conditions illustrates its constrained char-
acter. However, adding the constraints Eq. (lOb) to this variational
statement via the Lagrange multiplier method will free the principle of
constraints and all of the initial conditions as well as the differ-
ential equations are then regurgitated. Thus:

1
6{f (uv+u'v-v'u')dx + X1U(O) + X2v(l)} = 0

0
1 1 1

- u'vI + f (u"+u'+u)6vdx + (v-v')6ul
0 0 0

1

+ f (v"-v'+v)6udx + X16U(O) + u(O)S I + X26v(l) + v(1)SX2  (11)
0

6u(O) and 6v(1) may be viewed as arbitrary if

A, -v(O) - v'(O)

X2 - u1 () (12)

-707- a

r -. .. .. , __ , ... ... . -. -_ _, ... .. .... ... . .. _ .... __



Substituting the definitions (Equations (1
2 )),into equation (11) and

integrating by parts:

1 1

f L(u)dvdx + f L*(v)6udx + u'(0)6v(O)

0 0

+ (v(l)-v'(1))
6 u(l) - u(O)Sv' (0) + v(1)6u' (1) 0 (13)

Since all variations are now viewed as arbitrary:

L(u) u" + u' + u = 0 ; O<x<l

u(O) = 0

U' (0) = 0 (14a)

L(v) -v" v1 + v = 0 ; O<x<l

v(1) 0

v(1) - V'(1) -v'(I) = 0 (14b)

Thus under the definitions (Equations (12)), equation (11) becomes an

unconstrained adjoint variational principle which corresponds to the

physical system together with its adjoint.

I

i.e., daf (uv+u'v-v'u')dx + (v(O)-v'(O))u(O) + u'(1)v(1)} = 0 (15)

0

In view of the linearity of the systems considered and the arbitrariness

of 6u and 6v, the portion of equation (13) which yields the u-system may

be considered separately from that which gives the v-system.

1
i.e., f (u"+u' u)6vdx + u'(0)6v(O) - u(0)6v'(0) = 0 (16)

0

Further, there is no reason why the variations on v cannot be those

performed on u. Thus,
1

f (u"+u' u)6udx + u'(0)6u(O) - u(0)6v'(O) = 0 (17)

0
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One notes in passing that equation (17), unlike equation (15) is not of
the form 61 = 0, that is, no functional exists unless the adjoint system
is included. Thus equation (17) might be more properly called a varia-
tional 'statement' as opposed to a 'principle'.

rhe Lagrange multiplier technique may be applied to the more general
equations governing the motion of a linearly elastic solid. For example,
consider the following system:

a u U k 9.. = 0
3uk  k- k,

uk - Uk(t ) -- 0 on Su

n zG k 4-Fk on Sf

uk - Uk(tO) 0 ; t = tO

k - vk= ; t = to  (18)

The result of applying the Lagrange multiplier technique to this system
and its adjoint is the following variational statement

t
0=ft 1 [f LdV + FukdS + f 6{n %CY k(k-Uk )}dS~dt

t V SN  Su

+ f dV{-Uk(tl)6Uk(tl) + Vk6Uk(tO)

V

+ [Uk(tO) - Uk(tO)1P66k(to) (19)

where L is the Lagrange density

L = l/2pikilk - U(Ukluk,t xj)

Equation (19) and the result obtained by Tiersten [6] are identical
except that in the interest of simplicity, no material surface of
discontinuity has been considered in Eq. (19). It is to be noted that
all variations are unconstrained so that the trial functions used in
seeking an approximate solution need not satisfy any boundary or ini-
tial conditions a priori. If trial functions can be chosen that do
satisfy some of the boundary constraints beforehand, convergence will
usually be more rapid.
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IV. APPLICATIONS.

Example 1: Wave Equation

S 92U- p 9= 09X2 t2

u(O,t) = go(t), u(Y-,t) = gl(t)

u(x,O) = ho(x), u(x,O) = hl(x) (20)

Thus,

U = l/2S(u')
2  F = 0

U= - -!= Su
au

Substituting the boundary conditions and the expressions for U and a
into Eq. (19) results in the following variational statement:

tl{
0 = f (a2uSu-u'6u')dx + [u(k,t)

0 0

-gl(t)]6u'(kt) - [u(O,t) - go(t)]6u'(O,t) + u'(Zt)6u(Yt)

-u'(O,t)6u(O,t)}dt + f a 2 [-u(x,t 1 )6u(x,t )
0

+hl(x)6u(x,O) + [u(x,O) - ho(x)]lu(x,O)]dx (21)

where a2 = p/S. A matrix formulation of Eq. (21) is achieved by
substituting the approximation

NxN
u(x,t) I a.(x,t).C.

j=l 3 3

as in the Ritz procedure but without any constraint requirements on
the a. set a priori. The result is a set pf algebraic equations of

the form
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NxN
I k ijc j = r. i=l,NxN (22)

j=l1

for the determiiination of the constants cj(Z,tl). Results are giv-,; in
Tables 1 and 2 for the case:

go = gl = hI = 0; ho(x) = inTrx/ ; Z = 2

The shape functions aj(x,t) are taken to be products of polynomials in
x and t. Good convergence is obtained for N = 8. As expected, Tables
1 and 2 show a decline in accuracy as the interval of integration is
doubled.

Example 2: Free Oscillator-Particle Mechanics

Ui + W2u = O, u(O) z Uo, u(O) = v 0  (23)

The variational formulation for this problem is

t1 
+ v06_(0f (u u-w2u6u)dt - U(tl)6U(tl) + v08u(0 )

0
+ u(0)6u(O) - U06u(0) = 0 (24)

Table 3 gives the results for the case u0 = 0, v0 = w = 2Tr, and tI = .
The assumed shape functions are polynomials in the time variable. A
polynomial of order eight again gives good convergence.

Example 3: Response of a Beam to a Moving Mass

A concentrated mass is assumed to move at constant velocity v
along the length of a uniform Euler beam, simply supported at each of
its ends and having zero displacement and velocity at time t = 0.
Under suitable definitions for k and m, the representative equations
may be written [10]:

yiV + k + f(x,t) = 0

y(0,t) = y"(o,t) = y(l,t) = y"(1,t) = 0

y(x,o) = y[x,O) = 0 (25)
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The function f(x,t) consists of a sum of inertial terms:

f(x,t) = m(Y+2vy'+g+v 2 y ' ' )6(x-vt)

where g denotes the gravitational constant and 6 is the Lirac function.
The appropriate variational equation is

f t l f (y"6y"-k Sy+f(x,t)6y)dxdt

0 0

+ kf {y(x,t 1 )6y(x,tl) - y(x,0)6y(x,O)}dx = 0 (26)
0

A matrix approximation to Eq. (26) is obtained as in the first example,
again using products of polynomials through order eight. The results
are shown in Figure 1 as a comparison with values scaled from the exper-
imental curves of Ayre, Jacobsen, and Hsu [11] for the case v = v*/4,
v* being the lowest velocity to produce resonance when the load is a
moving weight only. The magnitude assigned to the moving mass is 25%
of the total mass of the beam of length L. The displacements have been
normalized with respect to the maximum deflection produced if the
weight was applied statically at midspan. This problem has also been
treated previously by the author [10], using a conventional finite
element method resulting in a set of differential equations in time.
The numerical integration of these equations appeared to require a
considerably longer computation time.

V. CONCLUSIONS. The unconstrained variational statement first
developed and used by Tiersten for the solution of field displacements
within a body containing a surface of discontinuity can indeed yield
solutions to boundary-initial value problems. Further, the variational
statement from which such solutions are possible can be formally con-
structed by the Lagrange multiplier method if the adjoint system is also
considered.
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Table I Solution Io %a% e equation 0 <x < 2.0; 0- 1 _ 2.0 (exact values in parentheses)

/ 0.0 0.4 0.8 1.0 1.2 1.6 2.0

00 .(08 xO) .587782 .951066 I .W)o000 .951063 .587785 .000056
(.(M x4)) (.588785) (.951057) (.(XX)000) (.951057) (.587785) (.o(000)

0.4 (0XX114 .475532 .769422 .809006 .769421 .475533 .000013
(.0(XN04)) (.475528) (.769421) (.809017) (.769421) (.475528) (.000000)

0.8 .AXWI. .181636 .293889 .309010 .293890 .181635 .000001
((.8O)4x Nx)) (.181636) (.293891) (.309017) (.293893) (.181636) (.000000)

I 0 - .(8)l - .000000 - .(XX)0(2 .0(XX) 1 - .000001 -. 000001 - .000002
(.(XXX)) (.0(XX)0) (.( ))(.0000) (.000X)) (.0(0)000) (000000)

1.2 - .(Xox)o - .181637 293889 - .309010 - .293890 - .181636 - .00000l
(.0 X)X8)0) (-.181636) ( .293893) ( .309017) ( .293893) (-.181636) (.0000W))

1.6 - .(8)13 - .475531 .769420 -.809)6 - .769420 - .475531 -.000012
(.1xX I) ( .475528) ( .769421) I .809017) (-.769421) (-.475528) (- .0(0(X))

2.0 (04)4h, - .587786 - .951055 999986 - .951056 - .587785 - .000033
((XX4M)) ( .587785) -.951057) ( 1.0(XX)00) ( - 951057) (- .587785) (-.0O( O0)

rahh. 2 Solutin to %.a e equati.n 0 x 5z 2.0; 0 I -<c 4.0 (exact %alue in pare'ntheses)

0.0 0.4 0.8 1.0 1.2 1.6 2.0

O.0 .0)8) 17 .595863 .964161 1.013774 .964161 .595867 .000031
.0(4)f (.587785) (.951057) )1.0( XX)O ) (.951057) (.587785) (.000000)

I) 8 .O(X8)4)8 .183947 .297637 .312952 .297638 .183948 .000007
(.8XX)))4)) (.181636) (.293893) (.309017) (.293893) (.181636) (.000000)

1.6 .014)14 -.477206 - .772139 - .811866 -.772139 - .477207 -.000012
((X))4t) ( -.475528) ( - .769421) (..809017) (-.769421) ( - .475528) (-- .000000)

2.0 -.00M I 1 -.587942 -.951308 -1.000253 .951309 -.587943 .000013
(.0(X4X)) (- .587785) (- .951057) (- 1.000000) (- .951057) (- .587785) (- .000000)

2.4 - .O(XXX))6 - .474475 - .767707 - .807204 - .767707 - .474475 .000007
(.0(X4) (- .475528) (- .769421) (- .809017) (- .769421) (- .475528) ( -.000000)

3.2 - .O(8XX) .181191 .293165 .308247 .293166 .181191 .00(301
(.0(8)48)4) (.181636) (.293893) (.309017) (.293893) (.181636) (.000000)

4.0 .0(XX)2 .587756 .951014 .999945 .951014 .587755 .000005
(.0()4)X)) (.587785) (.951057) (1.000000) (.951057) (.587785) (.000000)

Table 3 Soltiou i free oscillalor prohlem 0 <t!- t, = 1.0

Computed solution Exact solution

0.0 .00305 0.00000
0.1 .511656 .. 58779(O
0.2 .95218 .95106
0.3 .95159 .95106
0.4 .58670 .58779
0.5 - .00058 0.00000 a
0.6 - .5870I4 - 58779
0.7 - .95058 - .95106
0.8 - .95147 - .95106 j . EXPENTAL
0.9 - .58775 - .58779 VALUES
1.0 - .00"101 0.00000

0o. .2 . ~ .vyt
Fig. I Displacement of beam at location of moving mas%.
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F :1;,VId- -OR.ATION PIASTICITY AND PLASTI V I .II

S. Nemat-Nasser*
N l, stern Univers;ity, Evanston, Ill. 60201

APS if-ACT. The phnom:enon of local izat ion of defo-.t: 1)r' , 1
~d g.c teci ical :lterials is briefly discussed, and a fts i 11-:-r t ivre

examples are wiven. Then the mathematical procedure for the cail - .:
of the incipience of localization is presented and a few !,ptcific
pies are worked out. In particular, it is shown that man, v c01:1r:0.1), unced
constitutivc relations yield strange and unrealistic directions for the
lnc:ilization in biaxial extension. After this, a plasticity tlhecrv whicl
includes plastic (omi:;pressibility and internal friction is revieved with

application to ,ir:ple shearing of granular materials. Finally, a brief
account of a statistical model for such simple siearing is presented.

I. INTRODUCTION. Since Hadamard's [1] pioneering work on elasti-
city, Hill's [2, 3] contributions to plasticity, and Thomas' [4] formu-
lation of dynamical and kinematical conditions at surfaces of discon-
tinuities, considerable effort has been devoted to understand and quan-
titatively predict unstable flow by localized deformation of metals and
geological materials. Most of these efforts concern application of the

basic stability theory to specific problems. It turns out, however, that
a proper constitutive description which accurately accounts for the phy-
sics of the material involved, is of fundamental importance, otherwise
the theory yields strange results for the direction of the localized de-
formation over a wide range of material parameters. This has been illus-

trated for a number of commonly used constitutive relations by Nemat-
Nasser et al. [5], and is now being extensively examined [6].

4

In this paper we shall briefly illustrate the above mentioned strange
result first In some special cases, and then give an outline of a plas-
ticity theory which accounts for plastic compressibility and internal
friction. Finally, we shall examine in simple shear, and from a micro-
scopic statistical point of view, plastic flow of granular -materials. 1-:e
are able to give an almost complete description of the material bes'Lavior

in this simple stress state. We therefore hope that the basic approach
will serve as a model for the description of the mechanical behavior of
materials under more general loading conditions.

To bring into focus the nature of the physical problem in ques ion,
we qhall first briefly discuss a few specific examples.

II. EXAM LES OF LOCALIZED DEFORMATIONS. It is known that when a
thin metal sheet is subjected to uniaxial or biaxial extension, it may
lose stability by necking or by the formation of shear bands. Figure 1,

taken from Weinrich and French [7], illustraes this for _-1,ranS shcet

tensile specimens, where a localized shear band is formed at a stres's of

* Professor of Civil Engineering and Applied Mathematics.
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Fig. 1: Out-of-plane shear band in a-brass sheet tensile specimen

stressed at 400 MPa; taken from Ref. [7), p. 320.

about 400 MPa. Another example is shown in Figure 2, taken from Cottrell
[81, which illustrates shear bands in cadmium under uniaxial extension.
Here the deformation is almost totally plastic and irreversible. De-
spite this physical fact, many people still attempt to describe localized
bands in terms of elasticity theory.

Fig. 2: Localized slip ina single crystal of cadmium; taken from Ref.
[8], Fig. 3 (After Bilby).

Similar unstable deformations exist for soils and rocks under com-
pressive states of stress. Figure 3, taken from Taylor [9], illustrates
both a diffused-type bulging instability and an unstable deformation by
a localized shear band. In nature, under large tectonic compressive
stress and shearing, rocks and granular materials can flow in unstable
modes which lead to the formation of localized zones of highly densi-
fied materials. Because of this densification, these layers withstand
erosion better than the country rock, and therefore they are conspicu-
ously displayed in the field; see Figs. I to 7 of [101.
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Fig. 3: Shear band (a) and bulging instability (b) in a cy indrical o dm ['ple
of sand; taken from Ref. [9], p. 334.

In the case of metals which often contain nonmetallic econd-phase
microscopic inclusions, plastic volume changes may be of some signifi-
cance during unstable flows. Here, voids are often generated at second-
phase particles, and they grow during the process of large plastic defor-
mations. The hydrostatic tension facilitates void -jyowt, and therefore
affects macroscopic instabilities. Hence, a corstitutive description
must include both the plastic compressibility and the pressure (or ten-
sion) sensitivity of the material.

In the case of soils and rocks, internal friction, as well as inelas-
tic volumetric changes are of paramount significance and must be included
as first-order effects in the corresponding constitutive relations. We
shall discuss these and related results in what follows. However, we
shall first illustrate the mathematical setting involved in the calcula-
tion of the incipience of localized deformations 12] and demonstrate how
many commonly used plasticity constitutive relations lead to strange
results [5, 6].

III. LOCALIZED DEFORMATION AND CHARACTERISTICS. Consider an infin-
itely extended homogeneous body under a homogeneous initial state of
stress, i.e. the Cauchy stress components o are constant throughout the
body; we use a fixed rectangular Cartesian cJordinate system x, i = 1,2,3.

Consider a bifurcation from this homogeneous state of initial stfess,
defined by prescribing velocity field v. with the corresponding deforma-

1 1

tion rate D = v + v ) and spin V (v - ), and denote
ij 2 ij i j 2 i vi

the rate of change of nominal (nonsymmetric) stress (referred to and mea-
sured per unit current area) by Aij We have iJ °lj ,k ij k v kj

where bij is the material rate of the Cauchy stress, and the repeated

indices are summed.

For continuing equilibrium we :rust lav.
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=ij 0, <i >v = 0 , (3.1)

where the first equation must hold within the region currently occupied
by the body (rate of change of body forces assumed zero), and the second
equation wust hold across any interior surface with unit normal vi . In
this latter equation <6i..> denotes the difference between the two values

1)

of the enclosed quantity calculated on the opposite faces of the considered
surface along the normal v. Equation (3.1)2 simply ensures the continuity
of tractions across any interior material surface.

For a large class of rate-independent materials (which includes hyper-
elasticity, hypoelasticity, and elastoplasticity), the rate constitutive
relations can be expressed as (compressible)

1ij = Cijk V,k ' (3.2)

where C ijk depends on the state of stress and possibly the history of

deformation, but is independent of the velocity gradient v i'. Substitu-

tion from (3.2) into (3.1)1 yields

Cijkk Vg,ki = 0 . (3.3)

This is a system of second-order partial differential equations with con-
stant coefficients (homogeneous body under homogeneous initial state of
stress. Localized deformations may occur if this system of equations
admits real characteristics, in which case the velocity gradient vi, j can

admit discontinuities across the characteristics. Consider a velocity
field of the form

v, = n f(x • ) , (3.4)

where n and v are unit vectors. Substitution into (3.3) results in
[Cijkk Vk viI nk = 0 for f" 1 0 , (3.5)

which is a system of three linear homogeneous equations for nV k = 1,2,3.

Nontrivial solutions exist if and only if

det ICijk£ 'k vi = 0 (3.6)

which is the corresponding characteristic equation.

When the material is incompressible, we have vi' i = 0, and (3.2)

must be replaced by

j= Ci 1(kVXk + f 6ij 
(3.7)

where p is to be obtained as part of the solution. The incompressibility
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cod i ion ud (3.4) yield rj v = 0, so that ri is ptrpendicular toI I

subst itut ion from (3.7) into (3.1) yields1

C v , +  0 (3. 8)

With v. given by (3.4) and

I

p = :(x • v) , (3.9)

we obtain from (3.8)

(Cijk vk vi , nf V.& = 0 . (3.10)

From (3.10) we have

Cijkk vk i nj n£ 0 , n i Vi = 0 (3.11)

which is the characteristic equation.

IV. THIN SHEETS IN BIAXIAL EXTENSION. As an example, consider a
biaxial extension of a thin sheet with initially uniform thickness H, and

initial state of (Cauchy) stress 1l = 1l, a22 = 02, oI > 02 > 0; all

other components of oi equal to zero. We choose the xl - and x2-axes in

the plane of the sheet, and the x3-axis perpendicular to them, and con-

sider three possible unstable modes, as follows:

1) In-plane shear band with H = 0, a = 1,2. In this case, the plate

thickness remains uniform during the bifurcation; see Fig. 4 a.

2) Out-of-plane shear bond with v 2 
= 0. In this case, the shear band

occurs In the xl,x 3-plane; see Fig. 4b.

3) Necking, for which H 0 0; see Fig. 4c.

In all three cases the condition of plane stress requires that n33 : 0.

We consider both compressible and incompressible materials* and with

i= 6ij - 'i'kok_ - Wjkoki denoting the (objective) Jaumann rate of

the Cauchy stress, reduce (for the considered state of stress) the three-
dimensional stress rate-strain rate relations to the following form:

a 1= aI D 11 + a2 D22 + a3 D33' a2 2 = bI D 1 1 
+ b 2 D22 + b3 D33'

012 = D CD 02  = c 3 41

1 D12 ' 023 2 23 31 3 D3 1 ' (4.1)

• For a more thorough discussion of various cases see [6].
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Fig. 4: Localized deformations in biaxial extension of a thin sheet;
(a) In-plane shear; (b) Out-of-plane shear; and (c) Necking.

where Cij = aji, and for the compressible case, the condition i33 = 0

gives
D3 3 = - (dI D11 + d2 D2 2) ; (4.2)

for the incompressible case we have d = d = 1. It should be noted that

the coefficients ai, bi, i - 1,2,3, will have different values for com-

pressible and incompressible cases; in the latter case, n3 3 = 0 is used

to eliminate the pressure rate.
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4. .1r-Piane Shear: Since H 0, we have

ia '  I-(Ho )" = 6
a CU(4.3)

<naB> - (H o > v(1 < oa'" > V 0, (,P 1,2.
Q~ H CL ai xX.l2

Moreover, the velocity field is written as v = n f(x v) in the xI  2 -a a ~

plane, and hence the characteristic equation becomes

a1 (C +O)v +2[a b -a b1 -- ~a (c1 -oa --!b (C +C)]V V~

+ b 2 (C -) v4 = 0, 0=a1a2, (4.4)

where a = a - d a 3 and b = b - d b 3 , a = 1,2. The basic system of

differential equations is hyperbolic, parabolic, or elliptic depending on
whether (4.4) has 4, 2, or no real roots for vi/2'

4.2 Out-of-Plane Shear: In this case v 2 = 0 and hence D = 0. Thus,

D33 = -d1 D where dI = 1 if the material is incompressible. From this

condition we obtain, with v = ni f(x v), a = 1,3,

n3 V3 + d1 n1 V1  0, (4.5)

and the continuity of tractions yields,

- 2 1 _2 --

[a v +- (c 3  1 I T1 + [a + °i)] Vl v3 = 0,
1a1  2 3 1 3 1 ) + -~( 3  1 1 v3 r3 =,

(c 3 - 01) VI v3 nl + (c3 + Gi) ri n3 = 0. (4.6)

Equations (4.5) and (4.6) have a nontrivial solution given by

n3 = vI = 0, nl = v3 = 1, oI = c3, (4.7)

i.e. the shear band being parallel with the direction of the maximu=
tensile stress a V This is indeed a very strange result. Several authors

have considered out-of-plane shear band but they seem to have not realized
that these bands are parallel with the maximum stress axis; see, for
example Rice [il] and Hutchinson 112].

4.3 Necking: In this case H 1 0, and we obtain from <6 > V-0, = .,2,

the following characteristic equation [6):

(a I  d la )(C l+ OG)v4 + 2 {(a I  d a )(b 2 -d a 2) + I (c I 2 )

11 2 2
[a ( d + )] [b + (I - d l)a 2 + 1(C - v) 2 l 2

- [a 2 + (i-d 2 )o I +- (c I - [b1 +ld) -( ofv
2 1 1 1 1221 1 2
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+ (b2 - d 2o2 )(c 1 -o)v= 0o = 1+0 2 (4.8)

4.4 Examples: A systematic study of localization for various special con-

stitutive relations is given by Nemat-Nasser and Iwakuma [6]. Here we
present a few typical results.

As our first example, consider the hypoelastic case,

11 --- (D 1+ , 22 __ (V11 + D22)0 a12 = 2pD12°ii l- 1 vD 2 2 ) D022 i-D 12

D3 3  1 1v (D11 + D2 2 ) (4.9)

We set22 es2a 1 I alp < a < 1, S =o/p, b = v2 or v 2 (4.10)
21 2 35 4.0

and calculate from each characteristic equation the values of b which cor-
respond to the minimum value of S, as follows.

1) In-Plane Shear:

=2

Smi =---- (parallel to the O-direction). (4.11)

2) Out-of-Plane Shear:

S = 2 (parallel to the a -direction). (4.12)

3) Necking:
2

Si 1-a (parallel to the 0 -direction) for (1-a) >

Snin = (normal to the O-direction) for (1-a) < v. (4.13)

As our second (and last) example, we consider the incompressible model
used by Stbren and Rice [13], i.e.

S 2h-
aij = N ij (I - N) -2 D k ] + 6ij

2 1
2 2 a j , prime denoting the deviatoric part.

Then we have the following results, see [6].

I) In-Plane Shear:
2h11

(a = I - L-a (parallel to the a -direction) for N > .
111 (4.14)a I-

For 0 < N < -, the result depends on 
the value of a; see (61.

2) Out-of-Plane Shear:

-722-
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[21 (parallel to the c -direction).
Imin N1

3) Necking: In this case the results depend on the c(,M1hir:it ion of :; nd

a. Typical calculations are given in Fig. 5, taken from [6]. It i,& ce.r,
that over a wide range, the theory predicts bifurcation parol1, i to tile
maximium stress direction.

V. A PLASTICITY THEORY WIITl COMPRESSIBILiTY AND .i-WAL kJ](TION.
In this section we briefly review a plasticity theory with cuoi:pre sj-iity
and internal friction which recently has been developed in [14], and then
apply the results to the case of simple shear. The theory is bsed on a

modification of the usual J2 flow rule; the subscript 2 will be dropped

in the sequel. It considers a flow potential g, and a yield function f,
defined by

g M /5 + C(I, A, &), f / - F(I, L, C), (5.1)

where 1
J= i 0 ijoij' Oii,

O PO PO
A = I D. de = J - a' DP .de ; (5.2)

0 P i1 0 P ii iJ

here, prime denotes the deviatoric part, 6 is a monotone increasing (or
decreasing) time-like parameter, p0 and p are the mass-densities in the

reference and current configurations, respectively, and Dp . denotes theii

plastic part of the deformation rate tensor given by

D i A (5.3)

ii 30ii

Now using the usual procedure and f = 0, where a superposed dot denotes
differentiation with respect to 0, we obtain

Dp f Ili 1 i * aF *
ij 2H& 2_l °k k -3-1 okk)
Dp 3 aG ( 1__ , *F

33Ca 1 * (5.4)
kk H I 2lj k -k - akk

where the hardening parameter is given by

= - ( 3 G- + 5 )(5.5)

and the dilatancy factor 3G/3I is defined by

3 G Ir Dp k

, Dp

ij ij
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4.0 N =0. 05

0.25

U 0.050.5
2.0 -Od0.7

S / 1 2h

-- OUT-OF-PLANE SHEAR

1L.0
100.0 0.5 1.0

a =a 2/0

1.0

N =0.7

b V2 (b)2

.5
0.5

.25
.0

0.0 0.5 1.0

Fig. 5: (a) Bifurcation stress as function of stress ratio; (b) Direction of
necking as function of stress ratio.
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Equation (5.5) may be written as H = I + h, where

--O F C0 3G 3F
- 3 h = - G -F (5.7)

the first quantity denotes hardening due to distortional effects, and the
second quantity represents hardening (or softening) due to volumetric
changes. We refer to hI as the density-hardening parameter.

We shall now apply the above results to the simple shearing of granu-
lar materials. The state of stress is shown in Fig. 6. We shall assume
that the grains are rigid, and therefore there is no elastic deformation.
Hence the superposed p will be dropped. We now observe that J = T2 , D 2

1* . T 22
D and 0 y/p. The state of stress is defined by (T, a), and

21 2 y 0
the state of deformation rate by (y, v/v), where v/v is the rate of volume
change per unit current volume.

a

! !

/ /S AM /

/ /

Fig 6: Granular materials sheared under vertical pressure.

The flow potential and yield function then become

g T + G(a, A, E), f M - F(c, A, ), (5.8)

and simple calculation yields

d- _ o da H,

&y bdy

6 G) F 3 F (59)- (I 4)3a TZ 'UT (.

From (5.6) we have

-, -v (5.10)
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which shows that £'G/ is the dilatancy or the rate of volume change per

unit rate of distortion. From (5.8)2 on the other hand, we obtain with

L and constant,

df = dT - do w 0,

or
_F dr (5.11)
o = do '

and hence 3F/aO is the instantaneous coefficient of overall frictign.
Therefore the rate of frictional loss per unit volume is (OF/a)ay
which must equal the rate of plastic work, -Co/v + TY, resulting in

1 r aF r
- ao = T (5.12)

In the r,o-plane

0F T _ 0 (5.13)
o - C

defines the locus of points for which ' = 0. This is the critical curve.

States above this curve dilate and those below densify; see Fig. 7.

a

Fig. 7: The critical curve T = a DF/ao in the r,a-plane.

Consider continuous shearing under constant normal pressure,

a = constant. The differential equation (5.9) then becomes

__T aF LF - aF (M - 7) + h(y) (5.14)

where the definition of new terms in this equation is clear from the con-

text. The distortional hardening h(y) plays an important role in char-
acterizing the shear stress--plastic shear strain relation. If h drops

to zero quickly with increasing y, then the solution of (5.14) would re-

semble the behavior of loosely packed cohesionless granules. On the other
hand, if the decrease of h with increasing y is gentle, then the stress-
strain relation admits a peak. In Fig. 8 these are shown by curves (1)

and (2), respectively.
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h

((a)

) (2)

((b) Y
t/i)

Fig. 8: (a) Variation of h with y; (b) Normalized shear stress as function
of plastic shear strain; curve (1) is for loosely packed, and
curve (2) is for densely packed sample of granular materials.

It is easy to show that the void ratio e = V /V which is the ratio
V $

of the void volume to the solid volume, is given by [14]

Y
e - e0- (1 + [ - exp q Gdy!]

a - (i + e 0) [l - exp {ffY( - T/C) dy}],

0

where e0 is the initial void ratio. The variation of e with y depends on

the corresponding -,'-relation. In Fig. 9 we have displayed two curves
corresponding to the curves shown in Fig. 7. As is seen, curve (2) repre-
sents the behavior of densely nacked granules, and curve (1) that of
loosely packed ones; foramoredetailed discussion and comparison with some
experimental results, see !14:.
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Fig. 9: Variation of void ratio with plastic shear strain; curve (1) is
for loosely packed, and curve (2) for densely packed sample of
granular materials.

VI. A SIMPLE STATISTICAL MODEL. For a simple shearing of granular
materials a simple statistical model recently has been proposed by the
writer [15], which accounts for the observed initial densification, sub-
sequent dilatancy when the material is densely packed, and a net amount
of densification upon the completion of each cycle in cyclic shearing.
Here we briefly discuss this model.

When a granular material is sheared under normal pressure, as shown
in Fig. 6, the individual grains do not move along the horizontal line,
SS, which marks the macroscopic direction of shearing, rather they slide
over each other along a wavy line denoted by S'S' in Fig. 10. This re-
sults in a net amount of densification or dilatancy depending on whether,
on average, more particles move down or move up.

SS S,

Fig. 10: Sh ring of granular material in the SS-direction results in
notion of individual grains along the S'S'-curve; v is the
dilatancy angle.
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Consider a typical particle and let be the angle that the tangent
to the S'S'-curve makes with the SS-directlon. This angle will be called
the "dilatancy angle."

In a given sample which contains a very large nuiner of particle 5,

there exist many groups of particles, each with its own dilatancy angle
at each instant. Let p(v)dv be the volume fraction of particlcs whose
dilatancy angle is between v and v + dv. To calculate the overall rate

of volume change, we obtain the rate of volume change associated with
each group, and then integrate the results over the entire volume, using

the weighting function p(v).

To this end we calculate the rate of distortional work per unit vol-
ume associated with a group of particles whose dilatancy angle is V. With

€1 denoting the actual particle to particle angle of friction, this rate

of work is given by, see [15],

T Cos 4)
__ k v (6.1)cos(O + v)sin v v

where prime denotes the distortional part. Macroscopically, the rate of
distortional work per unit volume is 7' = Ti, and hence, (6.1) yields

1 cos( + v)sin v-- = - P (6.2)

v j cos 4)

compare with (5.12).

Now, if the dilatancy angle for a given macroscopic sample ranges
over v0 to v+, we obtain for the overall rate of dilatancy per unit rate

0 0'
of distortion, +

1 v 0
cos= f p(v) cos() + v) sin v dv, (6.3)v Y Cos €

-
where 0

+
V0

f p(v) dv = 1 . (6.4)

v0

Equation (6.3) has all the attributes necessary to yield the behavior of
granular materials in simple shear.

To begin with, we observe that even if the density function p(v) is

symmetric about v = 0, the right-hand side of (6.3) becomes negative, i.e.
densification. However, since the normal stress a facilitates the move-

ment of particles which.are sliding down (negative v) and hinders those
which are sliding up (positive v), we expect that initially p(v) should

be biased toward negative v's. This results in a larger initial
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densification, particularly for loosely packed granules in which the down-
ward motion of particles is less apt to be hindered by neighboring parti-
cles.

As most particles become mobilized in a densely packed sample of
granules, p(v) tends to become more biased toward positive v's, and
eventually leads to a positive value for the integral in Eq. (6.3). This
results in dilatancy. It is easy to argue in this manner, that upon a
load reversal, the integral in (6.3) yields a net negative value, and

hence a net amount of densification upon the completion of half a cycle
in cyclic shearing.

It is easy to show that the present model yields shear stress-shear

strain relations with observed characteristics, depending on the varia-
tion of p(v) with straining. In particular, with the aid of very simple
and physically reasonable assumptions about p(v), curves (1) and (2) of
Fig. 8 are obtained. We sball not discuss the details here, and refer
the reader to [15]. The author and his coworkers are now engaged in a
systematic experimental and theoretical investigation of the static and
dynamic behavior of granular materials, and results of these investiga-
tions will be reported in due time elsewhere.
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EFFECTIVE PARlMETERS AD FLUCTUATIONS FOR BOUNDAIRY VALUE PROBLEMS

George C. Papanicolaou*

Courant Institute of Mathematical Sciences, New York University

1. Introduction.

In modelling imperfections, inhomogeneities and in general the micro-

structure of material media, it is convenient to employ probabilistic coll-

cepts. For example one may take certain coefficients in constitutive re-

lations to be random processes. The resulting field equations are then

partial differential equations with random coefficients. Among the many

questions that can be asked about such field equations the simplest and

most common are perhaps the following:

i) To what extent are the deterministic equations obtained by

suitably averaging the random coefficients valid?

(ii) How can the fluctuations of the random solutions from the deter-

ministic ones of (i) be calculated?

These questions can be answered efficiently and with a good deal of

precision in the context of ordinary differential equations. The litera-

ture on the subject is extensive; for example [1, last chapter], [2,3] and

the survey [4] contain some results on (i) and (ii) and more references.

In particular [3] deals with boundary value problems which are considcrably

more difficult than initial value problems.

In the context of partial differential equations the status of i) and

(ii) is difficult to assess in general but one can say from a methodological

*Research supported by the Army Research Office under Grant No.

DAAG29-78-G-0177.
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and mathematical viewpoint that little has been done. The reason for

this is that one must analyze spatial noise and its effects while most

known methods deal with time dependent noise effects (Markovian and re-

lated methods which are essentially one dimensional).

Some progress has been made recently, however, and we shall report on

part of it here.

2. Averaging for a nonlinear boundary value problem.

Consider a region C IC Rd occupied by a conductor of unit conduc-

tivity. Let u(x) denote the temperature at x and F the heat source

density per unit volume so that

(2.1) Au + F = 0 in

with, say, u = 0 on a t". We wish to consider the case in which F depends

on the temperature u and is a random function of x E (Y. Since random-

ness is supposed to model microstructure, F must change rapidly as x

varies over distances. Let £ > 0 be a dimensionless parameter measuring

the size of the microstructure (such as a ratio of typical macroscopic to

microscopic lengths). Let F(u,x,y,w) be a function on R x &_ x Rd x

where (Q, 2 ,P) is a probability space with w E 0 labelling the realiza-

tions of the medium. We assume that F is a stationary process for each u

and x, i.e. that for any points yl,Y 2 ,...,y n and any h E R 
d , F(u,x,ylW),

...,F(u,XY ,w) and F(u,x,yl+hw)r...,F(uXy +h,w) have the same joint
n nl

probability distribution. We shall take the heat source F in (2.1) to

have the form F(u(x),x,,). Then the temperature depends on c and w and
-734- j



(2.2) Au (x,u) + F(u (X,W),x,-,) W , x ,

u, (x , w) = 0 ,x 6 '

The ('IUetj0l' iouw corresponding to (i) is this: doesci (.) hiv(. ,

lution (it is a noliinear problem) and is this solution CIose to the

avr rwged trol'l emn

(2.3) \oUx) WFu(s),s) 0 , x

u(s) 0 , x 3L"

H're F(u,x) is the average of F, i.e.

(2.-) V(u,x) I F(u,x,y,w)P(dw) E{F(u,x,y,-)}

and it does not depend on y because of stationarity.

Wf. shatl assume n,)w that (2.3) has a smooth solution u(x) . We shall

assume, that the. variational equation

z(W) + V(x)z(x) 0 , x E ,

(2.5)

z(x) 0 ,x

where

(2.,) v(x) v - (u () ,X) v (u(x) ,x)
,U U

has no solution oth(.rt L11 z(x) 0. Then there is an -0 > 0 such that

for each 0 t there is a sot S C ind for each - ,C ,.2.2) has

00

a soluition with
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(2.7) J u E (x,W) - u x j2dx PdOW h(

while h(c) - 0 and P(Q ) - 1 as E - 0. This result is proved in [5].
£

In the case of ordinary differential equations (d = 1) a very

general result of the above form was proved by White and Franklin in [3].

Thtir method consists of using repeatedly the corresponding initial value

problem result (shooting) which works very well. But it does not

qeneralize to PDE. We shall outline the method of [5] below after some

comments on problems related to (2.2).

In a medium in which heat sources are modelled as in (2.2), the con-

ductivity may also be taken as a rapidly varying random function so that

(2.2) becomes

(2.8) V-(a(X,w)Vu (x,w)) + F(u (x,w),x,-,u) = 0 , x

u (x,w) = 0 , x ED L,

The linear version of this problem (which one may call stochastic homo-

genization) is analyzed by Kozlov and Jurinskii [6,7] and also in [8].

The result in this case is that there exist constants (qij) that can be

computed by solving an auxiliary problem such that if u(x) is the

solution of

d

d 2-
(2.9) qi u(x) 

= 0 xE a ,
Z qj ax ax.+Fx=0i, j=l xi xj

u(x) =0, x E 3
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1. n again (2.7) holds. Here F = F(x) but it could also be random but not

I( .Ic'udcnt on 11. The ion] ine<Ar ver! i on ff (2.8) can a]so be analyzed with

t , it bt in,; (2.1) ith F re I ac-d by F(u (x), x) . However in the non-

i ,:ca- case (2.8), th vcilidity of th. ipproximation cai be shown (at

l~t, t) on al-,.r sme rither severe restrictions and not in the natural

ohro ]ityf o(f (2.2)-(-).7).

In both (2.9) and (2.3) the (I..) and F may be called the effective

conductivity aiA effective heat source density, respectively. In both

problems F is th( average of F but (qi) is not the average of (a..).11

This brings out an important point concerning question (i) of the intro-

duction: the deterministic equations corresponding (in a sense like

(2.7)) to some stochastic equations will not, in general, be simply the

same equations with the random coefficients replaced by the averaged ones.

To find the right limiting or averaged equations multiple scale techniques

are quite useful (cf. [9] for how this is done for media with periodic

structure) .

As an example of a problem where the limit equations art not the

original ones with averaged coefficients consider

1 i x

Au (xW) + - F(u (X,Iw) ,X, ,) = 0 , X E C,

U (xW) 0 , x ,

where now

E{F(u,x,y,.)} 0

The limit problem has the form
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Au(x) + G(u(x) ,x) = 0 , x E C4,

u(x) =0, x

where G(u,x) is given by

1 d 2 E{F (u,x,z)F(u,x,0)}dz
rd fz d-2 u

R

d
with rd the surface area of the unit ball 

in R
do

We go now to the proof of (2.2)-(2.7). For convenience we shall

assume that F(u,x,y,w) = F(u,x)(I + 4(y,w)) where f(y,w) is a scalar-

d
valued stationary and ergodic (this was not stated above) process on R d

We assume that F(u,x) and all derivatives that appear below are continuous

and bounded for all u and x. The process * has mean zero and finite
variance

(2.10) E{) = 0 , E{O 2 } <

Thus E(F) = F as in (2.4).

The random field O(y,w) has the spectral decomposition

(2.11) (y' ) = J e iky f(dk,w)
d
R

where the spectral measures * have orthogonal increments and

(2.12) E{j(dk)j*(dk)} = p(dk)

where p(dk) is the power spectral measure. In terms of the spectral de-

composition (2.11 we can construct a solution X(y,,.) of
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(2.13) A (y,~ + 4(y~e 0

inl the form

(2.14) x (,) iky 1 i*

Rd

Otic can verify that because E{~j = 0 and qis ergodic

(2.15) lirn ESK-L§ x(Yw)V

a nd

(2.16) Jlti2 E~f~ Vx (y,W) J2} 0

We now make the chanige of variables

(2.17) 11' (X,W) =vE (X,W) + C XC-,u)F(v C(x,uO),x)

using (2.2) we obtain for v E(x,w) the following equation

(2.18) [1 + F X(-,u)F (vC (x,u) ,x)DAv E(X,W) + F(v (x,w) ,x)
E: U

+ [F(v£ (X,W) + C X(-,W)F(v (x,w) ,x) ,x) -( F( )x ( + X)

X E :

" 2EVX(-,w)-VvE(x,w)F (v C(x,w),x)
E u

2 x E:(~) 2- C+ C X(-C, w)(Vv (xw)F uU(V (x,wa),x) = 0

Dividing by the coefficient of AV E we may rewrite (2.18) in the form

(2.19) AV (X,w) + F(VE (x,w),x) + GE (v (x,w),Vv E(xFOI)xIIA) 0 , xE ;

V E:(n,W) =0 ,x
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To make the following precise one must return to (2.17) and intro-

duce a suitable cutoff that keeps c 2X(,w) mall for all w G 2 and
C

x . It is from this that a set of points Q must be eliminated which,

however, has small probability. For our purposes here, we may assume that

X(y,w) and VX(y,w) are bounded independently of y and w (this is true in

the periodic case only, in general, i.e. when *(y,w) is periodic in y for

each W). It follows then that G£ is small when C is small independently

of its arguments.

Once it is realized that G is smallequation (2.19) can be solved by

standard methods. We write

(2.20) v =u + w

and note that we obtain

(2.21) (A + V(x))w (x,w) + G£(u + w ,Vu + Vw ,x,W)

+ F(u + w£ ,x) - F(u,x) - F (u,x)w£ = 0 , x Eu

w (x,W) = 0 , xE at - .

-1
By hypothesis (2.5), (A + V) exists and, since V(x) is smooth, has the

usual smoothing properties. Equation (2.21) is now solved by a contrac-

tion mapping argument in H1 (01 (the Sobolev space over & with boundary
0

values zero) since G is controlled by taking E small while the other term

F(u + w) - F(u) - Fu (u)w is controlled by taking w small.

The above can be generalized to handle eigenvalue or bifurcation

problems, i.e. situations where (2.5) has nontrivial solutions. This is

done in [8].
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3. Fluctuations for a nonlinear boundary value problem.

We consider next question (ii) of the introduction for problem

(2.2)-(2.7). This means that we must find how u (X,W) - u(x) behaves when

suitably scaled as c - 0. This is analogous to the central limit theorem.

!.et us define

Ij -Y E -
(3.1) , (u - u)

where 'y > 0 is an index that will be specified later. By direct computa-

tion we find that r satisfies the equation

(3.2) -(A + V(x)) r(x,) = E- F(u(x) ,x)4(-,w) + -Y(1 + f(x,W)

I(u + E: ¥ ,x) - F(u,x) - F (u,x)c r ]

u

+ F-C, w)F (ux) (u (x,w) - u(x,w)) , x e ',
Ej U

(x,) = 0 , x e t

-i
Let G(x,y) be the kernel (Green's function) of (-(A+V)) Then one can

show (cf. [8]) that as c - 0, (x,ue) as a procecs with values in L ( )

and the process

(3.3) t)C (x,W) = -v G(xy)F(u(y),y) 4,(-w)dy '

have the same weak limit. This really means that the other terms on the

right side of (3.2) are negligible co-pared to n . This requires some

improved estimates of the type obtained in the analysis outlined in the

previous section. In any case, it is worth noting that the analysis of

n which is a problem that has nothing to do with differential equations,

is in fact a multidimensional central limit theorem.
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The asymptotic limit of n (x,w) would be a routine matter to analyze

if it were not for the fact that G(x,y) is singular at x = y for d > 1.

Let us assume that the stationary process (x,w) is differentiable in

mean square any number of times and that a,"'- is smooth so that G(x,y) is'II
smooth for x jO y and behaves like Ix-y1 -d + 2 as x - y. Then one can

estimate E{( E(x,.)) 2 } for E small and conclude that in order that this

quantity be of order one we must have

d
Y = 2 ' for d 4

(3.4)
y = 2, for d > 4.

For d = 4 then is defined by replacing -Y -2(log -/2

course we have assumed here that the stationary process 4(x,w) is not

merely ergodic but has also rapidly decaying correlations (it is mixing

in a sufficiently strong sense). We recall that for the discussion of

:-ection 2 ergodicity was sufficient.

The fluctuation result is then this. Ignoring the exceptional w set

- Q since it has small probability, the solution u E(x,w) of (2.2)S

behaves for c small like u(x) + c (x,w), with y as in (3.4). Moreover

C (x,w) converges weakly (as a process in L2(0) to a Gaussian random

process with mean zero and covariance equal to the limiting covariance of

i.e.

lim Efn 5 (x)1E5 (y)) = lim JJG(x,z)G(y~z)F(U-(z),z)f(-u(z'),z')
C+0 f~

-2y z'- dzd
S R(---dz Z

where R(z-z') = E{ (z) (z')). For d < 4 this limit is equal to

-742-

=A.



G (x,z)G(y,Z) (F (u (Z),z)) dz p = R(z)dz

IN R

which is then the limiting covariance of as c - 0.
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A T1EORY OF INTERPENETRATING SOLID CONTINUA
AND SOME APPLICATIONS

H.F. Ticrsten
Department of Mechanical Engineering,
Aeronautical Engineering & Mechanics

Rensselaer Polytechnic Institute
Troy, New York 12181

1. INTRODUCTION

In the description of physical phenomena the model selected in a given situa-

tion depends crucially on the specific problem under consideration. As a conse-

quence, different models of a given physical structure are employed in describing

different aspects of its behavior. For exampleQ an anisotropic crystal may be

treated as a single continuum for many purpo as but must be treated as a discrete

lattice with a given structure and periodicity for certain other purposes, while

for still other purposes the nucleus itself must be considered and so on. In many

diverse physical situations, e.g., in the description of certain aspects of the be-

havior of ionic crystals and fiber reinforced composite materials, a description of

solid matter consisting of interpenetrating solid continua may be fruitfully em-

ployed. In addition to describing the usual acoustic type wave motion, this model

describes optical type wave motion at long wavelengths along with a number of other

things. Although for the continuum approach to be valid a characteristic length

such as a wavelength must be large compared with the spacing of the discrete ele-

ments, the model is particularly well-suited to the treatment of macroscopically

inhomogeneous situations and bounded media. In addition, within the continuum

framework the deformation may be arbitrarily large.

The interpenetrating solid continuum model, which is closely related to the

model of fluid mixtures (11, has been employed in the description of a variety of

physical phenomena such as, e.g., certain types of magneto-elastic interaction [2],

electroelastic interaction [31 and the interaction of the electromagnetic field with

deformable insulators [4]. In this latter case in order to consider ionic polariza-

tion resonances, the model consisted of two interpenetrating continua in which the

motion of the center of mass of the two continua was finite but the relative motion

of each of the continua with respect to the center of mass was infinitesimal. It

was felt that in order for the description to be physically meaningful, the relative

displacement of the two continua had to be infinitesimal, or else the solid would

1 i



rupture. Recently this model was employed in the description of material compos-

ites [5]. The idea of employing interpenetrating continua as a model of composite

materials had been introduced earlier by Bedford and Stern [6,7]. However, there

are a number of fundamental differences between the approach of Bedford and Stern

and that employed in Reference [5].

In this paper the differential equations and boundary conditions describing

the behavior of a finitely deformable, heat conducting solid are derived by means

of a systematic application of the laws of continuum mechanics to a well-defined

macroscopic model consisting of interpenetrating solid continua. Each continuum

represents one identifiable constituent of the N-constituent solid. Each constitu-

ent interacts with neighboring elements across a surface of separation by means of a

traction vector acting on that constituent, In addition, each constituent interacts

with all other constituents at the same point by means of volumetrically interacting

forces and couples, both of which are assumed to be equal and opposite in pairs.

The influence of a simple type of viscous dissipation is included in the general

treatment. Although the motion of the center of mass of the combined solid con-

tinuum may be arbitrarily large, the relative displacement of the individual con-

stituents is required to be infinitesimal in order that the solid not rupture. The

resulting system of nonlinear equations should pro-ide a reasonable description of

such materials as, say, fiber reinforced rubber.

After the general nonlinear description is obtained the resulting linear equa-

tions for the two-constituent continuum are exhibited in detail in the purely

elastic case. The linear elastic constitutive equations for both the general aniso-

tropic and isotropic cases are presented. The asymptotic results obtained from

plane wave solutions at long wavelengths in the isotropic case are exhibited and

discussed. A dynamic Lame type of potential representation of the isotropic equa-

*1 . which is complete, is exhibited. A simple problem of one-dimensional load

•.,n-f-r from the fiber reinforcement to the matrix of a composite material is con-

.. -.ithin the framework of the description [8]. However, since the material

-- t. r Frurring in the theory have never been measured for any composite materi-

liation cannot be performed. Nevertheless, if the model is reduced rather

#!y tut still plausibly for certain cases of interest in which the volume

rfnrcw'nt is low (6,71, the remaining unknown constants can be par-

-- , ' 11 rr the known ordinary elastic constants of the two constitu-

~. q, and a calculation can be performed. Finally, some results
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of surface wave propagation obtained from the reduced model along with an acditional

assumption are presented and discussed.

2. THE INTERACTING CONTINUA

As indicated in the Introduction, the macroscopic model we consider consists

of N distinct interpenetrating solid continua. Initially, all continua occupy tnce

same region of space and, hence, have the same material coordinates X .* The iootion

of the center of mass of the combined continuum is described by the mapping

yji y(X t) I, y= y(X, t) .(2. 1)

which is one-to-one and differentiable as often as rec7uired. In (2.1) the y . denote

the spatial (or present) coordinates and X LIthe material (or reference) coordinates

of the center of mass and t denotes the time. We consistently use the convention

that capital indices denote the Cartesian components of X and lower case indices,

the Cartesian components of X. Thus, X and y denote the initial position of all

material points and the present position of the center of mass of the combined con-

tinuum, respectively. Both dyadic and Cartesian tensor notation are used inter-

changeably. Since each continuum possesses a positive reference mass density P n

and initially occupies the same region of space, we have

N

00 P(n) ,(2.2)

n=l

where o00 is the total reference mass density of the combined continuum.

In a (finite) motion each continuum is permitted to displace with respect to

the center of mass of the combined continuum by infinitesimal displacements fields

(n))

The infinitesimal displacement fields w ()are regarded as functions of Xand t.

Since the w ()are infinitesimal and

y (n =y+w ((Y It),1 (2.3)

and the determinant of a matrix product is equal to the product of the determinants,

we have
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where
j(n) (n)

J=det y i L = det yi " (2.5)

Inasmuch as mass is conserved separately for each constituent, from (2.4) and (2.5)

we have

(n) (n) (2.6)

0

which enables us to write

N
\ (n)

p = £ P OJ= 0O, (2.7)

n=l

and p is the total present mass density of the combined continuum. Since y has

been defined as the center of mass of the combined continuum, we may write

N N

(+w (n) )0(n) dV= Xp (n) (2.8)

nl V n )  n=l (n)

which,by virtue of (2.4) and (2.6), enables us to write

N N

S0 w =0, p(n) dw /dt=0, (2.9)

n=l n=l

where d/dt denotes the material time derivative.

The interpenetrating continua interact with each other by means of defined

local equal and opposite force fields LFnm=- LFmn which are located at the posi-

tion X, where the first superscript denotes the continuum being acted on and the

second, the continuum producing the action, and defined equal and opposite local

material couples LCnm=- C mn. Each continuum interacts with neighboring elements
(n)

across a urface of separation by means of a traction force per unit area t act-

ing on that constituent. Schematic diagrams illustrating the above-mentioned inter-

actions in the model are shown in Figures 2, 3 and 4.

3. THE EQUATIONS OF BALANCE

From the discussion in Section 2, the rate equations of the conservation of

mass for the different continua and the combined continuum are obvious. The equa-

tions of the conservation of linear momentum for each of the N continua are
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N (n)rP (n ) (n ) L L nm = d r (n ) - -

t dS + I j dV+dV t 2 v + t dv,

S V m;nV V

n= 1,2 .. . N, (3.1)

where v = dy/dt. The equations of the conservation of angular momentum for each of

the N continua are

N
((n) (n + (n) (n) (n) \ iLn L nml

dS (+wn)x f dV+ C + yX F v=

S V m/n V
dw(n)

d (,+w ) xp (n) + d ! dV, n = 1,2, N . (3.2)

V

From (3.1) in the usual manner, we obtain

(n) () (33)

The substitution of (3.3) into (3.1) with the aid of the divergence theorem and (2.6)

yields
dv d2w (n) N

(n) (n) (n) (nn)n d, L nmVT +p f-~ p -- ~ 2 + F =0, (3.4)V*T +df t - 2 + /"

dt rn/

which are the stress equations of motion of each of the N continua, and where

V = e i/y i and e. is a unit base vector in the ith Cartesian direction. Substitut-

ing from (3.3) into (3.2) and employing the divergence theorem, (2.6) and (3.4), we

obtain

N

e e T(n ) +e [w(n) (n) n () X P(n)f (n) + \' LcnmA i ij +1eAkj k ij 2 (n - /
rnn

(n) (n) dv (n) (n) 2_wn. X P T - wn x p - 0, (3.5)

t dt 2

which constitute the equations of the conservation of angular momentum of each of

the N continua.

Adding the N equations in (3.4), we obtain

T T + pf = p dv/dt, (3.6)
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which are the stress equations of motion of the combined continuum, and

N N
(n) \ (n)f (n)

(3.77 =  T ,pf = / p f 37

n=l n=1

where T is the total mechanical stress tensor and f is the total body force per unit
(n)

mass. Now let us define the constants r by

(n) (n) (N)
r = Po /o (3.8)

and then the subtraction of r (n) times the Nth equation in (3.4) from the nth equa-

tion in (3.4) yields

(n) (n)-(n) +.(n) (n) 2 (n) 2
V ID +10 f +7 P dT /dt ,(3.9)

where

D(n) (n) (n) (N) 1(n) f(n) fN)
ij 1) 1) ' ) J I

N (N-1)
(n) LFnm (n) LFNm

- F. j-r F.,
m/n MIN

(N-1)
(n) (n) (N) (n) + (i)w(i) (3.10)

m=l

Equations (3.9) are called the difference or relative equations of motion, and D
(n ).

and -(n) are the difference stresses and difference displacements, 
respectively. ]

Adding the N equations in (3.5) and obtaining the tensor form from the axial vector

form, we obtain

(N-l)
A 1 n F(n)w(n) (n) (n) _(n)w(n) (n) (n)f
T_ F D --D w(3.11).ij 2 i L ki jk kj ilk-ei w + wi (3.11)

n=l

which is the equation of the conservation of angular momentum for the combined con-

tinuum. Equation (3.11) turns out to be of considerable value and interest when

viscous type dissipation is considered. However, in the absence of viscous dissipa-

tion Eq. (3.11) is a direct consequence of the invariance of the stored energy func-

tion in a rigid rotation.

Although we cannot explicitly evaluate each of the defined couples of interac-

tion LCmn between the respective continua in the description presented here we can
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readily evaluate the total internal couple acting on each continuum, and that is all

that is required in this type of description. Similar statements hold in the case

of the defined forces of interaction LmF between the respective continua.

4. THERMODYNAMIC CONSIDERATIONS

The conservation of energy for the combined material continuum can be written

in the form

N dw (n)d f' r [(n)f _____

dt (T + oe)dV =t t v + -- ' dS
_ -t. dt

V n=l S

+ nf (n) +v dV - n (dSn (4.1)
dt

V S

where T is the kinetic energy per unit volume, e is the internal stored energy per
+(nw (n)/t

unit mass, t (n )  (v +dw /dt) are the rates of working per unit area of the mechan-

ical surface tractions acting on each continuum, n *q is the rate of efflux of heat
(n)f (n) (n)

per unit area and 0 (f (v+dw /dt) are the rates of working per unit volume

of body forces acting in each continuum. From the model of the continuum it is

clear that T takes the form

N dw (n) dw (n)

T( d= + - • d + n (4.2)
2 dt - dt
n=l

Expanding terms in (4.2), substituting from (3.3), (3.7) and (3.10), employing the

divergence theorem, (2.7), (2.9), (3.6) and (3.9), we obtain

N-I dw (n) dw (n)
dp. T" (n) 111_', _n -j70 .

= 
.i4. i . + \ D.. - . L.t - q. , (4.3)

dt iv j'i ij dt •,n dt qi, i
n= 1  ,1

which is the first law of thermodynamics for the combined continuum.

We may now introduce a simple type of viscous dissipation by assuming that the

symmetric part of the total stress tensor, the (N-1) difference stress tensors and

difference internal forces may be written as a sum of a dissipative and a nondissi-

pative part. Accordingly, we write [I

R D S D A (n) RD(n) DD(n) (n) = (n) +D(n)
T= T+ T + Tr , D + D , = + (4.4)
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and in each case the superscript R indicates the nondissipative (stored energy) por-

tion and the superscript D, the dissipative portion. Substituting from (4.4) into

(4.3) and employing the dissipative portion of (3.11), we obtain

N-I dw (n) dw(n)
de R + -%(n) w, R (n) j--, DS
t :.. ij Jt a_ ) + d.. +

dt ijvj,i dt ,i j dt ijdi9n=l

N-I dw (n) dw (n)
+ - -D(n)r( j__ w(n) -_D (n) j (n)o Wj , , (4.5)

kj dt k- i,k ij j dt7 - 1]n -qi (45

n=1

where the rate of deformation and spin tensors are defined by

1 1
di . (v. +v. ), 1. (V -v. .). (4.6)ii 2 ill i'j ij 2 j,i ij

For the circumstances under consideration, the mathematical expression of the second

law of thermodynamics may be written in the form [1i

N-i (n) ) dw (n)

_- - . v. . - } = C) .0 E (4.7)t 3 ji ' dt ,i j dt dtn=l

where e is the positive absolute temperature and T is the entropy per unit mass.

From (4.5) and (4.7) we have the dissipation equation

N-1 (n)
FD D(n)( d (n)

iid-ij + D kj k-ik ij -n=l

dw (n)... -qw.8D :(n ) , 3 w (n ) W ! q - 0 0 d 4 8

j t i ij i,i dt' (4.8)

and the entropy inequality may be written in the form

d !,q~ F N-i dw (n)n

DPn( + wi) !-, S ! nF ~~
-t .T Tij ij '+ -1 D -7t-, k = y ijm ,

D- J ( d w ) _ -l ~ q l Pr O 2!(4.9)

where r is the positive rate of entropy production. At this point it should be noted

that this theory can readily be generalized [12,13] to account for a more general

functional constitutive response in the manner set forth in a previous paper [3].
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5. CONSTITUTIVE EQUATIONS

Since we are concerned with thermodynamic processes for which both the state

function equation (4.7) and the dissipation equation (4.8) are valid, we may deter-

mine the dissipative constitutive equations from (4.9) and the nondissipative con-

stitutive equations from (4.7). Since the entropy inequality is of the form shown

in (4.9), it is convenient to define the thermodynamic function * by the Legendre

transformation

(5.1)

the substitution of which in (4.7) along with use of the chain rule of differentia-

tion enables us to write

d* = R i d 5 + FRD(n)X i d (Wn), -

t ij M i dt (j,M +  
1) Midt ),

n=l

(n)p., ( n) ! (5 . 2 )
j dt - d

Since (5.2) is a state function equation, we must have

(n) (n)
(Yj,m; Wj,M; wj ;(5.3)

but since in order to satisfy the principle of material objectivity [14,15] must

be invariant in a rigid rotation of the deformed body, * may be shown [16] to be

expressible as an arbitrary function of the arguments,

1 _ 6E) p(n) w(n) (n) w(n) (5.4)
EL 2 i,KYi,L KL' LM kL kM' L =kL k

Hence r may be reduced to the form

(n) (n) (5.5)

in place of the form shown in (5.3). From (5.2), (5.4) and (5.5), we obtain

N-1
R Py. y + r (n) + yi, w(n)) (5.6)7ij 1)iL J,M )E LM PiL L(n----ILj L- (n---- j,M (5)

n- LLM

RD(n) R (n)ij =Py iJsL6PM(n) I j -PYj, L aN(n) 0(5.7)
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where we have introduced the conventions */ ELM = ,/EML and it is to be assumed
that EKL/ ELK = 0 in differentiating *. Substituting from (5.7)1 and (5.7)2 into

(5.6) and employing the chain rule of differentiation, we obtain

(N-1)
R (n) (n) (n)7

I W, (5 8
ij = PYi, L-j,M E * ki j,k_ (5.8)

LM n-i

A
the antisymmetric part of which is identical with the recoverable portion of T ..

1)

given in (3.11). Thus, even in this rather complex situation, the antisymmetric

portion of the nondissipative part of the stress tensor is derivable from a thermo-

dynamic state function and has just the value required by the conservation of angu-

lar momentum.

This brings us to a consideration of the dissipative constitutive equations,

which are obtained from the entropy inequality (4.9) fro which by using established

methods 117,18] it has been shown (16] that the principle of material objectivity

is satisfied if the dissipative portions of the constitutive equations take the form

D S i Y,,Yj, TL , q i = y i , KLK

D (n) A(n) D_ (n) (n)
-ij =Yi,Kyj,L KL j =j,K K (5.9)

where typically

T R Z(n) (n) P( (n) 1) (5.10)KL KL( MN' MN 'BM , M'EMN' MN

and similar relations may be written for L L (n) and (n)I andK' XL K'
dE MN (n) (n) B(n) (n)

'MNYyI MN = Yi j,Ncij B = M 0 ' (5.11)

where 
dw nn)(n) = Ca) (n).. ! n) j w (n) (.2

Cij i k, y ' j = dt Wk wkj (5.12)

which have been shown [16] to be objective tensors and vectors, respectively. Thus,

all that remains in the determination of explicit constitutive equations is the

selection of specific forms for , L (n ) and (n)
-4 KL K
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6. PIOLA-KIRCHHOFF FORM OF THE EQUATIONS

Up to this point all the equations have been written in terms of pr sent (:.i

spatial) coordinates. Since the reference (or material) coordinates cf mndtrial

points are known while the present (or spatial) coordinates are not. il is advan-

tageous to have the equations written in terms of the reference coordinat,'s. 1,Wh%'n

the equations of motion, (3.6) and (3.9), are written in terms of reference cordi-

nates, they take the respective forms [19]

K L-, L 0f. =o 0 dv./dt (6.1)

(n) .n) (in) d l 6
(n) + n nf. +=j. n =0. N- 1 (6.
Lj,L + 0 j 3 0 - -7dt

where

(n) Wn'Kj=JX iT .(n =jX (n)., =J *q. (6.3)
Lj L, iij' Lj L, Dij Q L JXL, qi 1

Equation (6.1) is the Piola-Kirchhoff form of the stress equations of motion and

Eq. (6.2) is the reference form of the (N-1) relative stress equations of motion.

Similarly, in reference coordinates the dissipation equation, (4.8), takes the

form [191
- dE N-l

JT KL + (m) z(m) m)B(m) Q d (6.4)
KL dt KL KL K K L,L o dt

m=l

The associated constitutive equations required here, which respectively re-
place (5.6), (5.7)11 (5.7)2) and (5.9), are given by [191

N-I
Mo (in) w. + -w (6.5)" = 3oYj's M;E LM 0(= )W % W i'

L PLM

.n = P Y. (n) = 0 (.6
Lj o j,K p(n) ' o j,L (- ) (6.6)

KLNL
DD Wn (n) D (n) A(n)

K Ljy j T J .LM J DjnK K ' Lj Jy ,M LM ' QK = JLK' (6.7)

where

K L jD 5 (n)R 5 (n) R D()W n , (6.8)Kj L + Lj' &Lj Lj : Lj a ) = j (
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(n) (n)and 'y and T LM' K LM , LK are given in (5.5) and (5.3.0), respectively. We also

have the additional constitutive equation (5.7) 3 ) which remains unchanged. Thus,

we now have i determinate system of differential equations, which by appropriate

substitution can readily be reduced to [4 +3 I (N- 1)] equations in the [4 +3 • (N- 1)]
(n)

dependent variables yj, 9 and w. , n=l,2, ... , (N-i). The equations are the

three each of (6.1) and the (N-I) of (6.2) and (6.4). To this system of equations

we -ust adjoin the associated boundary (or jump) conditions across moving not neces-

sarily material surfaces of discontinuity. These jump conditions, which are ob-

ta4.ned [5] by applying the integral forms of (6.1) and (6.2) and the reference forms

of (4.1) and the integral form of (4.9) to a region encompassing the surface of dis-

continuity in the usual manner, take the respective forms

NL1K + [V.1= 0 , (6.9)

N (n)] (n)/d]
N L. +UN~o [d1 /dt]=0 n=l2, (N-1) (6.10)

N-I dwn)
\ (n) j w

N LK .vj + . ()Q *U QL TU 0T (61 i)L Lj j n= Lj dt L N[T +  e]

N [Q /0] - U Co M a! 0 ,(6.12)

where UN is the intrinsic velocity [20] of the singular surface, i.e., the velocity

of the singular surface in the reference coordinate system. If the surface of dis-

continuity be material, UN in (6.9)- (6.12) vanishes. If, furthermore, the body

abuts another solid body and the full field equations have to be satisfied in each

region, additional conditions on [y] and the T(n)] have to be satisfied, which

usually are of the form

[y] = 0, [T(n) 1 0 (6.13)

Moreover, if, as is usually the case [0] = 0, r in (4.9) is bounded and in place of

(6.12) we have

N [Q 0 0. (6.14)

7. LINEAR EQUATIONS FOR THE TWO-CONSTITUENT CONTINUUM

It has been shown that when the equations for the two-constituent continuum

are linearized the stress and relative equations of motion take the respective

forms [21]
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K + , f = i (7.1)
LM, L o M M'

(1)
r =r 

7LM, L i + r (1) a N o r 0 (7.2)

%.7here u M is the mechanical displacement of the center of mass of the two-constituent

continuum and we have taken the liberty of using capital indices to denote the Car-

tesian components of the relative displacement vector w (l) in this linear descrip-

tion. In the purely elastic case the linear constitutive equations take the

form [211
(1) (1)

K =c U +( w + w
LM LMKN K, N KLMWK LMKN KN

&(1) i) + (1)

LM KNML K, N KML K MLKN K, N

(i) - a u -a w(1) - (1)
M = MKL K,L ML L MKL K,L' (7.3)

where the cLMKN are the usual elastic constants of ordinary linear elasticity, the

a may be called the difference displacement elastic constants, the b the

relative elastic constants and L and the respective elastic coupling
CYLILMKN U. h epcieeatcculn

constants. In the arbitrarily anisotropic case there are the usual 21 independent

c LMKN 6 independent a., 45 independent bMLKN' 18 independent oKLMl 54 independent

LMKN and 27 independent yKML' for a total of 171 independent material constants.

In the case of an isotropic two-constituent continuum the constitutive equations

take the reduced form [22]
KL=XU 6 +L(U +u + w (1) 1 (1) + ()

LM K,KLM LM ML 1K,K LM 2 2 L,M ML'

_() = ( + ) +w (1)6
LM 1 K,KLM 2 52 (UL, M UM, L + K, K°LM

+b . (i) + (1). +b (1) - (i). 'T(i) =-a w (I )

+b(wLM +WM L) L, M, L M 1 M (7.4)

and in order to secure the positive definiteness of the stored energy density the

eight material constants in (7.4) must satisfy the six conditions [23]

> 0, 3X+ 2u.>O, b2 >0, 3b1 +2b 2 >0, b 3 <0, a1 >0. (7.5)

When plane wave solutions are inserted in (7.1) and (7.2), with (7.4), we ob-

tain the asymptotic expressions for the frequency w-wavenumber relations at

small I (long wavelength), which take the form (24]
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2 1 2 4

0

2 a1 (bI + 2b2) 2 4w2 - i + (i +0( ) , (7.6)

2 (1) (1)
r 0 r PO

for purely longitudinal plane waves and

^2 1 2
U) = j_ + 0 ( 4 ) ,

2 a 2 b 3 ) 2w2 () + (I) 0( ) ,(7.7)

r 0o r PO

for purely transverse plane waves. Equations (7.6) and (7.7) reveal that w V 2

and 12 are real for real F. Moreover, it is clear that on a diagram of wversus g

there are four branches, two longitudinal and two transverse, with one of each eman-

ating from w=0, F=0 and the other one of each emanating from w = Ja/r(1 )po,  =0.

The longitudinal and transverse branches starting at w=0 have positive initial

slopes \(X +2)/co and 57-0, respectively, and the other two branches have zero
0 0 (1 pa.

initial slopes and positive curvatures (b +2b )/r () Pa and (b2 -b)/ J r (i)Poal"1 2 ol01 3 o01
It should be noted that only seven combinations of the eight constants in (7.4) can

be determined from plane wave measurements in the infinite medium. The evaluation

of the eighth constant recuires the measurement of a plane wave reflected from a

surface at oblique incidence. This fact implies that some reflection measurements

will be required for the determination of all the constants for any material sym-

metry from wave velocity measurements.

It has been shown that a dynamic Lane type of potential representation of the

isotropic equations may be written in the form [25]

u='VP+VXH, H=°,

w=V+VXG, V G=O, (7.8)

where the potentials satisfy the differential equations

(X + 21)V 2 0 + (1 +0 2 )V 29 = po@ ,

2 1 2
JIV H + T V G- p H

a. 2 2 . (0
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(1+ cp + (b I + 2b 2 )V2- all,= roo

1 2 2
S2V2 H+ (b2 -b 3)V2G- a G=r 0G (7.9)

and the representation is complete. Equations (7.9) reveal that thr scalar

potentials o and 1 are coupled in the representation separately from the vector po-

tentials H and G, which also are coupled.

8. LOAD TRANSFER IN FIBER REINFORCED MATERIALS

In this section we consider fiber reinforcement entering a matrix and terminat-

ing uniformly at a distance A into the matrix which continues down to a rigid sup-

port at a distance b below the junction, as shown in Figure 5. A total tensile

force P is applied to all the fibers crossing a given cross-sectional area. Since

the load is applied in the preferred direction of transverse isotropy, which lies

along the length of the parallel fibers, and it is assumed that all displacement and

relative displacement components transverse to this direction are constrained to

vanish and that the remaining displacement variables are independent of the trans-

verse coordinates, the nontrivial linear constitutive equations take the form [8,22]

K =K cu + w (1)(81
K11= K22 2 3,3 +3w3,3' (8.1)

K 3C 5U3  + ; 6 w 3) (8.2)

' ll 2 2 = U3, 3 +3w3,3 (8.3)

(1)
33 %63,3 + 583,3

3 w a (1) (8.5)

where X is the preferred direction of transverse isotropy, u3 is the nonzero dis-

placement component of the center of mass of the combined two-constituent composite

material and w (1) is the nonzero component of the relative displacement of the con-
3

tinuum representing the matrix. As noted earlier the KLM represent the components

of the stress tensor for the combined continuum and the LM represent the relative

stress tensor which is defined by

1= ) T(2) (1) (2) (1) (2)
LM LM - L ' / 0 =0 +0 (8.6)

-759-

. .... .' .- - - -... * ' - I - - -L



7 AAOSO 736 ARMY RESEARCH OFFICE RESEARCH 
TRIAWE PARK MC pig 20/4

TRANSACTIONS OF THE CONFERENCE OF ARMY MATHEMATICIANS (25TH).(UI

NCLASSIFI[D ARO-60-I "L

3 -80

9.9 Em



(in) (in)

where TLM and p represent the components of the stress tensor and mass density,

respectively, of each of the interpenetrating continua. In accordance with the

definitions in Sec.3 the vector field ;;M is related to the volumetric force of in-

teraction between the two constituents by the relation

;= F (Il+r) , (8.7)

L 12

where FM is the volumetric force exerted by continuum 2 on continuum I. At this
(in) (in)

point it is to be noted that the T and p do not represent the actual components
LM

of stress and mass density of each of the constituents in the composite, but only

represent those quantities in each of the interpenetrating continua, which occupy

the same region of space and, respectively, represent each constituent in the model.

As a consequence, if Am and Af represent the areas occupied by the matrix and fibers,

respectively, in a typical area A of the interpenetrating continua normal to the

fiber length, we have

m f (1) m m (2) f f
A=A+A , o - /A, p P A/A,

m (1) Ale f (2) A/AfA/A.. , .= . ,(8.8)

where the variables with the superscripts m and f represent the actual respective

quantities in the matrix and fiber reinforcement, respectively. The remaining non-

trivial stress equations of equilibrium and relative stress equations of equilibrium

are [8,22]

K 33 3 
+ Pf 3 

= 0, (8.9)

&33,3 3 +  f 01)W3 =
, (8.10)

where
(1) (2) (2) _ (1) f(2)

f= P f3  +p f3  3 3 f 3

and fr(I ) and f(2) denote the components of body force per unit mass in the continua3 3
representing the matrix and fiber reinforcement, respectively, which in the case of

the gravity force are the same as the body force intensities in the matrix and ff
3 3

in the fiber reinforcement, both of which equal g.

The substitution of (8.2), (8.4), (8.5) and (8.11) into (8.9) and (8.10) yields

C5 u 3P () + pg =0 (8.12)

"(1) ~.(1)
U 33 +b 5w 3 33- a2 w3  =0 (8.13)
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which are the one-dimensional displacement equations of equilibrium that apply to

the one-dimensional static problem under consideration. In the absence of g the

solution to (8.12) and (8.13) may be written in the form

-6 (Ae +De ) +BX +C
3 A 3

c5  *..

w = Ae +De (8.14)

where
2= a - 2) (8.15)

and A, B, C and D are arbitrary constants, to be found by satisfying the boundary

conditions in this one-dimensional problem. Since the continuum representing the

matrix and the ccntinuum representing the fibers can neither separate from nor pene-

trate into the single matrix continuum that abuts the composite at the junction, we

must have

(1) (2)
w3  =0, w 3  =0, atX 3 =0, (8.16)

which is consistent with (2.9) . In addition, the displacement u3 of the center of

mass of the combined composite continuum must be the same as the displacement U3 of

the isotropic single matrix continuum at the junction. Consequently, as kinematic

boundary conditions at the junction we have

w(I) 0, u3=U at X =0, (8.17)
3  3 3 3

where in the absence of g U3 satisfies

(Xm + (8.18)

and the nontrivial stress components in the single matrix continuum are given by

Tm = (X m+2 )U, Tm =22 =  U3,3 (8.19)33 3,3' 1 2 358.9

In addition to the continuity of displacement at x3 = 0 we have the continuity of

traction, i.e.,

K = TM at X3 = 0. (8.20)
33 33' 3

Since no force is applied to the matrix at X = 1, we have
3

(1) (2)33 0, T3 PO t at , 3 (8.21)
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which with (8.6) enables us to write the boundary conditions

K 33=Po & 33=-rpo, at X3= 2. (8.22)

Since the supporting surface is rigid, we have

U3 = 0 at X3 =-b . (8.23)

Thus, the boundary conditions are (8.17), (8.20), (8.22) and (8.23). The solution

to (8.18) takes the form

U3  EXI +F. (8.24)

Now, the substitution of (8.14) and (8.24) into (8.17), (8.20), (8.22) and (8.23)

yields

npe Kpe

1 -2a), 2a '
- liele

A Po
c 5 X7+24m5
p pob

E = o F m (8.23)

X7 + 24X7 + 2 17

which when substituted in (8.14) and (8.24), respectively, yields the solution.

Since the material coefficients occurring in the theory have never been

measured for any composite material, a calculation based on the foregoing analysis

cannot be performed. However, if the model is reduced sufficiently by making certain

simplifying assumptions, the material constants of the composite can be

estimated from the known constants of the individual constituents of the composite

while still retaining the essential characteristics of the composite for certain

cases of interest. The simplified model we consider is that of a fiber reinforced

composite material consisting of an elastic matrix containing uniformly distributed

continuous fibers extending in the X3-direction, in which the fibers occupy a small

fraction of the total composite volume. On account of the latter condition in the

reduced model it is assumed that the stresses in the matrix are related to the

strains in the matrix by the constitutive relations of linear isotropic elasticity

and are independent of the strains in the fibers. Similarly, the stresses in the

fibers are assumed to be independent of the strains in the matrix. It is further
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assumed that all stress components in the long narrow fibers vanish save the axial
(2)

stress T33 , which may then be written as a function of the axial strain in the

fibers only. Although this latter assumption seems questionable to us in general we

make it anyway. Then the only interaction between the matrix and the fibers remain-

ing is the volumetric interaction term F I2which from (8.5) and (8.7) tak

form
L12 -I (1) L 12=_ -i1 (i)

LFpl=- (l+r) aw (1) F3  - (l+r) aw (1), P= 1,2 (8.24)

At this point it should be noted that the aforementioned assumptions make the re-

duced model for the linear case identical with that of Martin, Bedford and Stern (9].

When the aforementioned simplifications are made we find that the decay factor o

given in (8.15) takes the reduced form [8]

2 - X7n+ 2m +E(2)
= (8.25)a =a 2 E(2)(X m+2 m (

where
(2) f fS E = A/A, (8.26)

and a2 is a complicated function [9,31 of the material constants of the matrix and
f

the fibers and the geometry. In the simplified model the actual stresses T3 3 in

the fibers and Tm in the matrix at the junction at X = 0 take the form [81
33 3

f
TfPo r(2) Xm + 2m

m33 = + 2 m +E (2) cosh a)

m (pfAf/A)(X m+24 m1 7

T33 m (2) cosh (8.27)
33 X m+ 2 t + E ()cs

where

f fPo p 0 (8.28)

f
and p denotes the actual stress in the fibers before they enter the matrix.

9. SURFACE WAVE PROPAGATION

Within the framework of the simplified model results have been obtained [8]

for the dispersion of surface waves in a particular fiber reinforced composite ma-

terial. Even in the simplified model the value of a had to be assumed and was
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arbitrarily taken to be equal to a2 in order to perform the calculations. The

calculations were performed for a set of material parameters corresponding to a

glass fiber reinforced phenolic resin [9], the relevant constants of which are

m = 2 4 f 6 20.00013 lb-sec /in, E= 12.4X10 lb/in2

f 2 4 f 6 2
= 0.00026 lb-sec /in , = 0.2 X 10 lb/in

lmb= 0.86 X 10/6 Win2
, 2m = 0.37X106 lb/in , (9.1)

for a fiber diameter of .01 in. for the volume percentage of reinforcement of 5.67%,

which corresponds to s =.04 inches. The results of the calculations for surface

waves propagating in the direction of the fiber reinforcement as shown in Figure 6

are plotted in Figure 7, which indicates the existence of an upper (optical type)

surface wave branch in addition to the lower (acoustic type) branch. We do not

believe that the upper surface wave branch actually exists, but that its existence

is a consequence of the reduced coupling in the simplified model [8]. In Figure 7

we have drawn a vertical dotted line which corresponds to a wavelength five times

the spacing of the fiber reinforcement. We do not believe the curves to be valid

much beyond this vertical line because of the nature of the model of the composite

we have employed, and we draw them considerably beyond their range of validity

simply to indicate the calculated behavior. The important curve in Figure 7 is the

lower acoustic type branch, which is drawn to a larger scale in Figure 8 along with

the corresponding acoustic type branch for propagation normal [81 to the direction

of the fiber reinforcement. Note the difference in dispersion for the two directions

of propagation considered. This very precise dispersion property of surface waves

could well be used as a means of nondestructively evaluating the distribution of the

fiber reinforcement in and the integrity of the bonding to the matrix.
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Continuum 2

Continuum 3

ContinuumI

Figure 1

Schematic Diagram Showing the Relative Displacements of the
Interacting Continua
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CContinuum I
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Figure 2

Schematic Diagram Showing the Linear Momentum and Force and

Couple Vectors Acting in Continuum I
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Figure 3

Schematic Diagram Showing the Linear Momentum and Force and
Couple Vectors Acting in Continuum 2
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Continuum 3

P ~d t
2 33

Figure 4

schematic Diagram showing the Linear momentumn and Force andCouple Vectors Acting in continuum 3
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Figure 5

Schematic Diagram of Loaded Fiber Reinforced Composite with
Reinforcement Terminating Uniformly in Matrix Some Distance
Before Support
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Fibers

Figure 6

Schematic Diagram Showing Surface Wave Propagating Along a Free
Surface of a Fiber Reinforced Composite
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Acoustic Typc Dispersion Curves for Surfdac Waves Propagating
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ON UNIQUENESS IN FINITE E]LSTIICITY

Morton E. Gurtin
Department of Mathematics
Carnegie-Mellon University

Pittsburgh, PA 15213

AE3ZTRACT This paper .ist-, countkerrxampe Jrrontratinq

laclk n' uniqueness for the major boundary-value proble--ms of

finite elasticity. Uniqueness is Then shown to hold in convex,

stable sets of deformations.

I. INTRODUCTION. Finite elasticity remains one of the

more difficult theories of Mathematical Physics. In this paper

we eiscuss reasons for this difficulty, concentrating mainly

on lack of uniqueness. We give Iheuristic counteraxamples for

all of the major boundary-value problems; these examples

demonstrate thait unqualified uniqueness is neither to be

expec'ted nor -'e. rE%'

This discussion leads us to ask: Where in the space ofL
lefc rmations . Ko lo ucro ho7 r pa <V -:nl ,. -I- o iih) .;

question we show that uniqueness holds in any convex, stable

set of deform;tions (Gurtin and Spector [i])

II. THE MIXED PROBLEM. We consider an elastic body 91,
3

which we identify with the regular region of R3 it occupies

in a fixed reference configuration. Consider a deformation of

I3; that is, a smooth (i.e., C ) map f: - F. with det F > 0,

where

F ' Vf

i - eformation .rad ent tUndkr f . '. :y,.r cn

a (Piola-<-Kirchhoff) stress

S(F(x) ,x)

at ec> xJS, where S (with obvious domain) is the smooth

rs... function for the body.

,5po. aored by the United 3tates Army under (,orntr-t NO. i;. \ ' -i,-COl3.
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v,. cs;lin , t:hat- tb ...Ve. nw;vy 3 is the union of disjoint
se t:., '.t. and , arnd t}, ,: te daforma ion is prescribed on 1.,

the su'ifac tr action on mixThe mied piroblem then cons~ists ;

in f i ni a deformation f thaL satisfies the ociation of

div S(Vf) 4 b C' (]

and bound ary conditions

f = d on A. S(Vf)n " on 8. (2)

Here I(vf) is the field with values S(,7f(x),x), b is the

prescribed body force, d is the prescribed deformation, and

s is the prescribed traction. Note that we have tacitly

res '.... td our attention to dead loads, since s and b are

functions of' x only.

Let f be a class C 2 solution of the mixed problem,

and let u be a variation; that is, u is a smooth vector

field on 2 which vanishes on A. Then

Is-u u.S (%f)n ,IS (Vf) .Vu 4 u-div S (Vf)]

.J2

![s(7f) -vu - b.u]

and we have the identity

rS(7f).Vu =,s.u + b-u. (3)

Conversely, a class C 2 deformation f that satisfies the

displacement boundary condition (2)L and the equation (3)

for c--- -v? variation u will automatically satisfy (1) and (2)2 .

This mrotivates the following weak statement of the problem:

Find = deformation f that satisfies the displacement boundary

condition and (3) for every variation u. A deformation with

this pfoperty will be called a solution.
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A difficulty intrins.ic to finite elasticity concerns the

s:olution space. To be mc-,aninqful. a solution f must not only

satisfy

(a) det Vf > 0,

but should also be

(b) one-to-one.

Cond ion (a) is severe and make,. the theory quitL -11ifficult.

Indeed, the collection of fields E:;itisfying (a) is iot convex;

as - tter of fact, for 8 a torus this collection can have

an infinite number of connected components, none of Which is

convex (cf. Antman [2)) . Further, it is usually not possible

to =-vtand the domain of S continuously to tensors F with

det F =, since S(F) generally becomes infinite as

dot F -* .

Condition (b) is even more severe, since it is global.

Of course, on- can drop this restriction provided one is

willing to acc- rt solutions of tw form

13 f('B)

An interesting question in global analysis is

(b) + what - (a)?

For t'.- displacement problem (ai ) ein dariwe . :urrishod

by th-: following

Th.orem (Meisters and Olech [31). Let ;l3 be an
3 3irreducible separating set of ]R Let f:3 F J be

smoot> and suppose that
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(i) clot vf

Then is one-to-one.

ill. LACK OF TrNJQUI.:NESS. As the following counter-

dxc' , demonstrate, uniqueness .n (jerefiai is (,L i.() be

We a ssum in e,:'imples tab) . (Ba) , and (C'o that

the reference configuration is natural; i.e., that. S(I,x) = 0

for a11 xt .

7. The traction problem (9 = % ).

(a) A translation of a solution yields another

solution. Rigid deformations which leave the loading invariant

also leave a solution invariant.

(b) Consider a thin hemispherical shell with zero

surface tractions. Then f = identity is a solution. But

there shoo I d bo seenl o1ut i oi cons sisl i ng of th( everted

shell (Armanni [41, Antman [51). Similar assertions apply to

c, thin c y ndr [i.4 t,c (ALmens < , Ai :iLcA s nq di scuisnioh

of eversion problems is given by Truesdell [7].

(c) Consider a rod subject to equal and opposite

tractions on its ends.

I.'E

This tye of loading should tesult in the two types of solutions

shown below (Ericksen (cf. Wang and Truesdell 181, p. 474))

-7-78-
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(d) Also, in problem (c), for sufficiently larj.-

loads xw;e would expect "buckled solutions" of the for'm

.....)
-... fUr ) . . --

(e) When an incompressible, homogeneous and

isotropic cube is loaded in tension by forces which are constant

in magnitude and perpendicular to the faces, and when these

forces ere sufficiently large, there exist seven solutions

(RivIin [9]) .

B. The displacement problem (0 = .)

(a) Consider a spherical shell with boundary condition

f(x) = x on A!. One o]ution, of course, is the identity.

But there are othe_ r deformations which Leave the boundary un-

moved, but deform the interior. Indeed, consider the deformation

caused by a; roLation of Lhe inner boundary by an integral

multiple of 2F about an axis through the center of the sphere

(John (cf. Truesdell and Noll [(1'], p. 129)).

(b) Consider an inhomogeneous body consisting of a

stiff rod whose cylindrical surface is surrounded by a soft

material. For certain sufficiently severe displacements of the

boundary we would expect the bar to buckle (Ball [11]).

C. The aenuine mixed problem (A 4 9, 2 3 f)

(a) Consider a finite cylindrical rod with sides

tracLion free and ends rigidly fixed. One solution is the

identicvy. Another corresponds to the deformation caused by a

rotati-n (in its plane) of one of the ends by an integral mulliple

of 2-, about an axis through its center (Gurtin [12]).

(b) We would also expect a situation similar to (Ad)

for a rod which is loaded at one end, but which has the other

end fixed.
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IV. STABILITY AND UNIQUENESS. Since unqualified

uniquen ss is not to be expected, it seems reasonable to ask:

Where in the set of deformations does uniqueness hold? Also,

since many of the counterexamples involve unstable situations,

one c_ - ilso ask: Are uniquenesr; and stability related? A

partial answer to the second question was furnished by Ericksen

and ,oupin [13] and Hill [14], who showed that Hadamard

stabiLty of a stressed state u :implies uniqueness for

infinitesimal deformations superimnposed on w. We now study

these auestions in further detail. (With the exception of

Remark 5 the remainder of this section is due to Gurtin and

Spector [I] .) For convenience, we rule out the traction problem
bruiring that h be relatively open and non-empty.

A process g is a one-parameter family g0  (0 < a )

of deformations such that

(a) go(x), G0 (x) = Vg (x), Ga(x), and G0 (x) exist

and aze jointly continuous in (x,o) on 8 X [0,P) (here a

superposed dot indicates differentiation with respect to a,

while V is the gradient with respect to x);

(b) go = 0 on £ for all aE[0,0);

(c) go 0.

We say that g starts from f if go = f.

Central to our notion of stability is the functional

P 0 (g) = (s0 -S 0 ) "G',

S O =S (Vg) ;

P represents the incremental power needed to sustain the

process g. A reasonable definition for the stability of a

deformation f is that P (g) be strictly positive near a = 0

in any process g starting from f. More precisely, f is

stable if given any process go ( i .) starting from f,
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0I

P (q) ,
a

for al I s-'fficiently s;maMI

Theorem. Unique nes s ho I . :2y (Cor!v">:, st.ble et of

defor;zat4 ons.

Pi' of. Consider a str~iiqht roccss

go (x) = f(x) 4 Ou(x)

with fa deformation and u / a varjat-iorn. As:urre that

g has values in a stable set 0. Then, since GO = Vu,

P cT+6 (9 )  (ST+6-So) .Vu

r
= (S+6 -so) Vu + (SaS).Vu.

But (for 6 > 0 sufficiently small) the first integral is > 0,

since go.-O is stable, and the second integrai is P C(g)

thus

Po+6 (g ) > PC (g)

and

a - Pa (g) is strictly increasing. (4)

Now let ( be convex and stable, and let f,h .O with

f / h be two solutions. Then

u = h-f

is a variation and

Js(vf).Vu = si.u + .b'u"
B S

fS(Vh)-Vu = fs-u + rb-u,

so th
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[s- (kih) -S (vf) -Vu (5)

Consider the straight line

g (x) = f(x) I4 o[h(x) f ] (X ) 0 < )

fria. to h. Then g lies In Q, because W :is convex,

a n, sple calculation shows 'bat

P1 (g) [S(7h)-S(Vf)] *Vu.

But (4} implies P1 (g) > 0 which contradicts (5). Thus f =- h

and the proof is complete.

Corollary. Let f and h be solutions of the mixed
problem. Then the straight path from f to h (provided it

lies in the space of deformations) cannot be stable.

Remark 1. Consider a straight rod placed between two

parallel plates which are moved toward each other until the

ZY .. L L . . .. / L/.

7 -7 / 7 7 7 - 1 1- / 2 / /

(a) (b) (c)

rod buckles. (a) and (b) denote two possible buckled states.

If the buckling is not too severe, the straight line connecting

these states will lie in the space of deformations. The

corollary asserts that at least one deformation on this path

is not stable; a strong candidate for such a deformation is

the intermediate state (c).
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Re- ik 2 Us ing the 1heorrm above as a bas iF;. Gtrt ill

and S t(r [1] have esti' shed uniqueness:

(a) in a neighborhood of a uniformly stable

defY: .- ion;

(b) in a neighborhC)(ud (, ao tLurzt coi ( f i(jl) iliu

whosz e-asticity terisor is posLL-.vx\0 1ainJtc;

(C) (f c* the d i splaL i' l. ()'lo m) .in I 1Ciflibc'li o(

of a h1rmogeneous, strongy-ellij.-ic configuration.

The results (b) and (c) are similar in nature to re.nults

estabished previously by Stopelli [15] and van Buren [16],

while (c) is due to John [17].

Remark 3. The foregoing results have been extended to

more ;r-anerat types of loading by Gurtin and Spector [1) and

Spector [18], and to nonlinear viscoelastic materials by

Gurtin, Reynolds and Spector [19].

Remark 4. One can show, using (4), that if D is a

convex, stable set of deformations, then the uderly: rig pe-ator

for the mixed problem is strictly monotone on 0.

Rema r. 5 L.L tlhe Lody, De hypc, e .1 a stic with t.c()tal oLen[ L ;

energy . (c includes the potential energy of the dead loads.)

(a) If f is a stable solution and if g is a

process starting from f, then

4(f) < I(go)

for all a > C sufficiently small. This inequality holds even

if f is not a solution, but 4 must be computed using the

dead loads necessary to maintain f.

(b) is strictly convex on any stable, convex

set ot deformations.
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